COMPARATIVE EVALUATION OF THE ABILITY OF REANALYSES WITH DIFFERENT RESOLUTION TO PORTRAY TEMPERATURE IN ZHEJIANG PROVINCE
-
摘要: 利用浙江省66个基本气象站1979—2010年的日平均气温数据,系统评估了三套再分析资料R1、R2和CFSR对浙江省气温的刻画能力。结果表明:三套再分析资料的气候平均态与观测均存在一定差异,其中R1、R2的空间分布型与观测较为接近,CFSR与观测差异较大;三套再分析资料均存在系统性冷偏差且这一偏差在32年中稳定存在,其中CFSR的冷偏差更显著,浙南地区是其冷偏差的重要来源。三套资料的均方根误差均存在季节变化:冬季(特别是1月)误差较小而夏季(特别是7-8月)误差较大,R1和R2的季节差异强于CFSR。CFSR对浙江省气温变率的把握能力优于R1和R2,其距平场EOF分解前三模态的空间型态和时间系数与观测更为接近。系统误差订正后,三套再分析资料的可信度得到显著改善,CFSR的改善效果最明显,说明系统性误差是三套再分析资料偏差的重要来源。改善后三套再分析资料的均方根误差和空间相关系数大体相当。CFSR网格点气温插值到观测站点时因海拔差异导致的误差以及CFSR在浙江省的模式地形偏高可能是其有较大冷偏差的重要原因。Abstract: The present study comprehensively evaluates the ability of three reanalyses, namely R1, R2 and Climate Forecast System Reanalysis (CFSR), to reproduce the temperature characteristics of Zhejiang Province using observed daily temperature data from 66 basic stations over the period 1979—2010. The result shows that the climatological normals calculated from all three reanalyses differ from the observed values, with the spatial characteristics presented by R1 and R2 being more consistent with the observation and the CFSR data deviating significantly from the observation. A systematic cold bias appears persistently throughout 1979—2010 in all the three reanalyses, with the CFSR having the largest cold bias, which mainly originates from the southern area of Zhejiang. The root-mean-square error (RMSE) of all the three reanalyses exhibits seasonal variability. The RMSE in winter (especially in January) is the smallest and the RMSE in summer (especially in July and August) is the largest for all three reanalyses. Besides, the seasonal variability of R1 and R2 is stronger than that of the CFSR. The Empirical Orthogonal Function (EOF) analysis reveals that the spatial pattern and temporal coefficient of the first three modes of the temperature anomaly of the CFSR agree with observation better than those of R1 and R2. Therefore, the CSFR can better capture the variability of temperature in Zhejiang. Correction of the systematic cold bias greatly enhances the credibility of the three reanalyses, especially for the CFSR, indicating that systematic error is a major contributor to the discrepancy between the three reanalyses and the observation. After bias correction, the RMSE and spatial correlation coefficient of the three reanalyses have comparable magnitude to each other respectively. The error resulted from elevation difference between the CFSR grid points and observational stations during the interpolation, as well as the possible high bias of the model terrain of the CFSR in Zhejiang may be important factors in producing relatively large cold bias.
-
Key words:
- data error /
- mean air temperature /
- CFSR /
- R1 /
- R2
-
表 1 浙江省66个国家基本站信息
站号 站名 海拔高度/m 58443 长兴 25.00 58446 安吉 72.20 58448 临安 117.60 58449 富阳 47.90 58450 湖州 4.10 58451 嘉善 2.60 58452 嘉兴 4.80 58453 绍兴 7.90 58454 德清 102.00 58455 海宁 5.30 58456 桐乡 6.00 58457 杭州 43.20 58458 海盐 4.80 58459 萧山 96.50 58464 平湖 4.00 58467 慈溪 5.70 58468 余姚 38.00 58472 嵊泗 79.60 58477 定海 35.70 58537 开化 153.60 58542 桐庐 44.80 58543 淳安 172.20 58544 建德 87.20 58546 浦江 85.20 58547 龙游 66.20 58548 兰溪 48.30 58549 金华 64.70 58550 诸暨 39.10 58553 上虞 6.40 58555 新昌 115.10 58556 嵊州 104.30 58557 义乌 90.00 58558 东阳 91.90 58559 天台 107.60 58562 鄞州 6.20 58563 北仑 5.00 58565 奉化 41.50 58567 宁海 25.00 58569 石浦 129.20 58570 普陀 85.20 58631 常山 137.00 58632 江山 126.30 58633 衢州 82.40 58642 武义 103.80 58643 永康 102.90 58644 遂昌 238.60 58646 丽水 59.70 58647 龙泉 222.10 58652 仙居 83.00 58654 缙云 179.10 58656 乐清 60.80 58657 青田 57.80 58658 永嘉 34.30 58659 温州 28.30 58660 临海 6.60 58664 温岭 35.30 58665 洪家 4.60 58666 大陈岛 86.20 58667 玉环 95.90 58742 云和 159.60 58745 庆元 400.80 58746 泰顺 538.90 58750 文成 105.40 58751 平阳 254.00 58752 瑞安 39.70 58760 洞头 68.60 表 2 R1、R2、CFSR与站点观测EOF分解前三模态时间系数之间的相关系数
再分析资料 PC1 PC2 PC3 R1 0.92 0.57 0.43 R2 0.92 0.78 0.49 CFSR 0.93 0.86 0.42 -
[1] 王传辉, 姚叶青, 时刚 . 江淮地区 ERA-Interim再分析与观测温度资料对比分析[J]. 气象, 2018, 44(9): 1 220-1 228. [2] 赵天保, 符淙斌, 柯宗建, 等 .全球大气再分析资料的研究现状与进展[J]. 地球科学进展, 2010, 25(3): 242-254 [3] KISTLER R, KALNAY E, COLLINS W, et al. The NCEP-NCAR 50-Year reanalysis: Monthly means CD-ROM and documentation[J].Bull Amer Meteor Soc, 2001, 82(2): 247-268 [4] KALNAY E,KANAMITSU M,KISTLER R, et al.The NCEP/NCAR 40-Year Reanalysis Project[J]. Bull Amer Meteor Soc, 1996, 77(3): 437- 471. [5] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEP-DOE AMIP-Ⅱ Reanalysis (R-2) [J]. Bull Amer Meteor Soc, 2002, 83(11): 1 631-1 644. [6] UPPALA S M, K LLBERG P W, Simmons A J, et al. The ERA-40 reanalysis[J]. Quart J Roy Meteor Soc, 2010, 131(612): 2961-3012. [7] ONOGI K, TSUTSUI J, KOIDE H, et al. The JRA-25 Reanalysis[J]. J Meteor Soc Japan, 2007, 85(3): 369-432. [8] SAHA S, MOORTHI S, PAN H, et al. The NCEP Climate Forecast System Reanalysis[J]. Bull Amer Meteor Soc, 2010, 91(8): 1 015-1 058. [9] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597. [10] KOBAYASHI S, OTA Y, HARADA Y, et al. The JRA-55 Reanalysis: General specifications and basic characteristics[J]. J Meteor Soc Japan, 2015, 93(1): 5-48. [11] RIENECKER M M, SUAREZ M J, GELARO R, et al. MERRA: NASA's modern-era retrospective analysis for research and applications[J]. J Climate, 2011, 24(14): 3 624-3 648. [12] 贾蓓西, 徐海明, 安月改 . 中国区域再分析湿度资料与均一化探空湿度资料的对比分析[J]. 气象, 2014, 40(9): 1 123-1 131. [13] WANG W, XIE P, YOO S, et al. An assessment of the surface climate in the NCEP climate forecast system reanalysis[J]. Climate Dyn, 2011, 37(7-8): 1 601-1 620. [14] XUE Y, HUANG B, HU Z, et al. An assessment of oceanic variability in the NCEP climate forecast system reanalysis[J]. Climate Dyn, 2011, 37(11-12): 2 511-2 539. [15] CHAUDHARI H S, POKHREL S, SAHA S K, et al. Improved depiction of Indian summer monsoon in latest high resolution NCEP climate forecast system reanalysis[J]. Int J Climatol, 2015, 35(10): 3 102-3 119. [16] LINDSAY R, WENSNAHAN M, SCHWEIGER A, et al. Evaluation of seven different atmospheric reanalysis products in the Arctic[J].J Climate, 2014, 27(7): 2 588-2 606. [17] GUO Y, ZHANG S, YAN J, et al. A comparison of atmospheric temperature over China between radiosonde observations and multiple reanalysis datasets[J]. J Meteor Res, 2016, 30(2): 242-257. [18] ZHOU C, WANG K. Contrasting daytime and nighttime precipitation variability between observations and eight Rreanalysis products from 1979 to 2014 in China[J]. J Climate, 2017, 30(16): 6 443-6 464. [19] ZHANG W, LOU Y, HUANG J, et al. Multiscale variations of precipitable water over China based on 1999—2015 ground-based GPS observations and evaluations of reanalysis products[J]. J Climate, 2018, 31(3): 945-962. [20] WANG A, ZENG X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. J Geophy Res, 2012, 117D05102, dov: 10.1029/2011JD016553. [21] BAO X,ZHANG F. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. J Climate, 2013, 26(1): 206-214. [22] HE W, ZHAO S. Assessment of the quality of NCEP-2 and CFSR reanalysis daily temperature in China based on long-range correlation[J]. Climate Dyn, 2018, 50(1-2): 493-505. [23] ZHAO S, HE W, JIANG Y. Evaluation of NCEP‐2 and CFSR reanalysis seasonal temperature data in China using detrended fluctuation analysis[J]. Int J Climatol, 2018, 38(1): 252-263. [24] 敖雪, 翟晴飞, 崔妍, 等 . 三种风场再分析资料在辽宁省海岸带的比较与评估[J]. 高原气象, 2018, 37(1): 275-285. [25] 高瑞, 穆振侠, 彭亮, 等 .不同订正方法下 CFSR再分析数据在天山西部山区径流模拟中的应用[J]. 中国农业气象, 2017, 38(6): 342-352 [26] 陈艳春, 王娜, 顾伟宗, 等 . 环渤海区域再分析资料地面风速场的适用性对比分析[J]. 海洋气象学报, 2017, 37(1): 67-72. [27] 范苏丹, 盛春岩, 曲巧娜, 等 . 利用春季黄渤海沿海大风观测资料评估 CFSR风场再分析数据[J]. 气象科技, 2017, 45(5): 917-924. [28] 何斌, 黄渊, 陈亮 . Multiquadric方法在中尺度气象资料客观分析中的应用[J]. 高原气象, 2014, 33(1): 171-178. [29] 朱业玉, 宋丽莉, 姬兴杰, 等 . 基于分段三次样条函数逐时气象资料模拟方法研究[J]. 气象与环境学报, 2017, 33(2): 44-52. [30] 吴洪宝, 吴蕾 . 气候变率诊断和预测方法[M].北京: 气象出版社, 2010: 400. [31] 何冬燕, 田红, 邓伟涛 . 三种再分析地表温度资料在青藏高原区域的适用性分析[J]. 大气科学学报, 2013, 36(4): 458-465. [32] 施晓晖, 徐祥德, 谢立安 . NCEP/NCAR再分析风速、表面气温距平在中国区域气候变化研究中的可信度分析[J]. 气象学报, 2006, 64 (6): 709-722. [33] 谢潇, 何金海, 祁莉 . 4种再分析资料在中国区域的适用性研究进展[J].气象与环境学报, 2011, 27(5): 58-65. [34] 程新宇杰, 高路 . ECMWF再分析气温资料在天山山区的可信度检验[J].北京师范大学学报(自然科学版), 2018, 54(5): 635-644. [35] 田伟红, 万晓敏, 冯建碧 . 探空温度观测与 ERA-interim再分析资料的对比分析[J]. 热带气象学报,2019,35(1):89-98.