DYNAMIC AND THERMODYNAMIC CHARACTERISTICS OF MESOSCALE CONVECTIVE SYSTEM AND THE IMPACT OF ITS EVOLUTION ON VERTICAL WIND SHEAR
-
摘要: 为探究环境风切变在对流系统发生发展与维持过程中的重要性,利用2009年6月5日20时(北京时)上海宝山站的探空资料生成理想试验初始场,设计了包含改变整层、中层和低层风切变在内的多组试验,对比分析各试验系统的动热力结构特征及其演变发现:(1)整层环境风切变的改变对中尺度对流系统的影响最显著,其次是中层风切变。增大整层风切变时,对流系统强度及组织性最强,生命史增长。减小整层风切变时,系统强度最弱且组织结构易发散。(2)风切变增加,水平涡度增大,其受垂直运动影响转化为垂直涡度,涡旋对与垂直运动间相互作用形成的正反馈过程是系统强度增强并可以长时间维持线状结构的重要原因。(3)风切变减小,对流系统移动速度远小于阵风锋,阵风锋移至系统前方,阻断系统前沿上升气流必需的暖输送。阵风锋后冷而稳定的环境令系统逐渐消散。Abstract: To explore the importance of wind shear in the development and maintenance of convective system, the present study uses the sounding data from the Shanghai Baoshan meteorological observation station at 20:00 on June 5th 2009(LTS) to generate the initial field of idealized simulation, and designs a series of tests including the change of the entire level, mid-level, and low-level wind shear. The system's dynamic and thermodynamic characteristics and the evolution of the system are analyzed, and the following results are found. (1) The change of wind shear in the entire layer has the most significant impact on the mesoscale convective system, followed by the change of wind shear at mid-level. When the entire layer vertical wind shear is increased (decreased), the convective system has the strongest (weakest) strength and organization, and the life span of the system becomes longer (shorter). (2) As the vertical wind shear increases, the horizontal vorticity also increases, which will be converted into vertical vorticity under the influence of vertical motion. The positive feedback developed by the interaction between the vortex and vertical motion is an important reason for the enhancement of the strength of the system and the maintenance of the linear structure for a long time. (3) When the wind shear decreases, the movement speed of the convection system becomes much lower than that of the gust front, which moves to the front of the system and blocks the necessary warm transportation of the updraft at the front of the system. The cold and stable environment after the gust front dissipates the system.
-
Key words:
- idealized simulation /
- wind vertical shear /
- vertical motion
-
图 4 控制试验3 h(a)、5 h(b)和7 h(c)沿图 3直线AB所做剖面上的最大反射率(阴影,dBZ)、垂直速度(等值线,实线为正,虚线为负,m/s)、风场(箭头,m/s)
图 5 积分3 h时增加(a、c、e)及减小(b、d、f)低层(a、b)、中层(c、d)和整层(e、f)风切变试验的最大反射率(阴影,dBZ),地面风场(箭头,m/s)
黑框为图 7对流区位置。
图 7 积分3 h时US5试验(a1~c1)和US-5试验(a2~c2)对流区(图 5黑框位置内)在1.5 km(a)、2.5 km(b)和4 km(c)上的垂直速度(阴影,m/s)和水平风场(箭头,m/s)
图 12 US5(a、b)和US-5(c、d)试验在3 h(a、c)和5 h(b、c)的近地面扰动位温(阴影,K)和组合反射率(等值线,25 dBZ)直线为图 13剖面位置
图 13 US5(a、b)和US-5(c、d)试验在3 h(a、c)和5 h(b、d)沿图 12直线位置所做剖面上的位温分布(阴影,K)
直线为1.5 km高度。
表 1 试验方案名称及中、低层切变值
试验名称 CTRL US-5 US5 LUS-5 LUS5 MUS-5 MUS5 As/(m/s) 0 -5 5 -5 5 -5 5 改变风速的层 原始 整层 整层 0~3 km 0~3 km 3.5~6.5 km 3.5~6.5 km 0~3 km切变/(m/s) 17.0 14.5 19.8 14.5 19.8 17.0 17.0 3.5~6.5 km切变/(m/s) 5.5 4.9 6.1 5.5 5.5 4.9 6.1 -
[1] 章国材.强对流天气分析和预报[M].北京:气象出版社, 2011 [2] 曾智琳, 谌芸, 朱克云, 等. 2017年"5.7"广州特大暴雨的中尺度特征分析与成因初探[J].热带气象学报, 2018, 34(6):73-87. [3] 王丹妮, 丁治英, 王咏青, 等.一次多弓状中尺度雨带的成因机理及其与水平涡度的关系[J].热带气象学报, 2020, 36(1):131-144. [4] 刘瑞翔, 丁治英, 孙凌光.夏季江淮地区中尺度对流系统的统计特征分析[J].暴雨灾害, 2015, 34(3): 215-222. [5] 张小玲, 杨波, 盛杰, 等.中国强对流天气预报业务发展[J].气象科技进展, 2018, 8(3):8-18. [6] COTTON W R, ANTHES R A(著).叶家东等译.风暴和云动力学[M].北京:气象出版社, 1993. [7] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10): 3413-3436. [8] 郑淋淋, 孙建华.干、湿环境下中尺度对流系统发生的环流背景和地面特征分析[J].大气科学, 2013, 37(4): 891-904 [9] NEWTON C W. Structure and mechanism of the prefrontal squall line[J]. J Atmos Sci, 1950, 7(3): 210-222. [10] LILLY D K. The dynamical structure and evolution of thunderstorms and squall lines[J]. Annual Review of Earth and Planetary Sciences, 2003, 7(1): 117-161. [11] ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 1988, 45(3): 463-485. [12] TAKEMI T. Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions[J]. Atmos Res, 2006, 82(1-2): 37-54 [13] TAKEMI T. A sensitivity of squall-line intensity to environmental static stability under various shear and moisture conditions[J]. Atmospheric Research, 2007, 84(4): 374-389. [14] GUARRIELLO F, Nowotarski C J, Epifanio C C. Effects of the low-level wind profile on outflow position and near-surface vertical vorticity in simulated supercell thunderstorms[J]. J Atmos Sci, 2018, 75(3): 731-753. [15] LEMONE M A, Zipser E J, Trier S B. The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE[J]. J Atmos Sci, 1998, 55(23): 3 493-3 518. [16] ALEXANDER G D, YOUNG G S. The relationship between EMEX mesoscale precipitation feature properties and their environmental characteristics[J]. Mon Wea Rev, 1992, 120(4): 554-564. [17] MONTMERLE T, LAFORE J P, REDELSPERGER J L. A tropical squall line observed during TOGA COARE: Extended comparisons between simulations and doppler radar data and the role of midlevel wind shear[J]. Mon Wea Rev, 2010, 128(11):C17-C21. [18] XUE M. Density currents in two-layer shear flows[J]. Quart J Roy Meteor Soc, 2000, 126(565): 1 301-1 320. [19] CONIGLIO M C, STENSRUD D J, WICKER L J. Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems[J]. J Atmos Sci, 2006, 63(4): 1 231-1 252. [20] JOHNSON R H, AVES S L, CIESIELSKI P E, et al. Organization of oceanic convection during the onset of the 1998 East Asian Summer Monsoon[J]. Mon Wea Rev, 2005, 133(1): 131-148. [21] CONIGLIO M C, CORFIDI S F, KAIN J S. Views on applying RKW theory: An illustration using the 8 May 2009 derecho-producing convective system[J]. Mon Wea Rev, 2012, 140(3): 1 023-1 043. [22] 陈明轩, 王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报, 2012, 70(3): 371- 386. [23] 李娜, 冉令坤, 高守亭.华东地区一次飑线过程的数值模拟与诊断分析[J].大气科学, 2013, 37(3): 595-608. [24] 张建军, 王咏青, 钟玮.飑线组织化过程对环境垂直风切变和水汽的响应[J].大气科学, 2016, 40(4): 689-702. [25] 杨婷, 闵锦忠, 张申龑.分层气流条件下地形降水的二维理想数值试验[J].气象科学, 2017: 222-230. [26] 赵玉春, 王叶红, 崔春光.大对流有效位能和条件不稳定下地形降水的三维理想数值研究[J].气象学报, 2011, 69(5): 782-798 [27] 王楠. 2009年6月两次飑线过程的差异及成因分析[D].南京:南京信息工程大学, 2014. [28] 郑晓栋, 路璐. 2009年6月5日一次飑线天气特征分析[C]//第六届长三角气象科技论坛论文集. 2009. [29] WEISMAN M L, KLEMP J B. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J]. Mon Wea Rev, 1982, 110(6): 504-520. [30] 郑淋淋, 孙建华.风切变对中尺度对流系统强度和组织结构影响的数值试验[J].大气科学, 2016, 40(2): 324-340. [31] FOVELL R G, OGURA Y. Effect of vertical wind shear on numerically simulated multicell storm structure[J]. J Atmos Sci, 1989, 46 (20): 3 144-3 176. [32] 苏洋.一次华南飑线的动热力和云微物理特征及演变的模拟研究[D].南京:南京信息工程大学, 2017. [33] 俞小鼎, 姚秀萍, 熊廷南, 等.多普勒天气雷达原理与业务应用[M].北京:气象出版社, 2006 [34] DAVIES-JONES R. Streamwise vorticity: The origin of updraft rotation in supercell storms[J]. J Atmos Sci, 1984, 41(20):2 991-3 006.