ANALYSIS OF LIGHTNING AND PRECIPITATION ACTIVITIES IN THREE ELEVATED CONVECTIVE EVENTS BASED ON DOPPLER RADAR AND MICROWAVE RADIOMETER IN HUBEI PROVINCE
-
摘要: 利用常规观测、加密自动气象站、三维闪电定位仪、天气雷达和地基微波辐射计资料等,对湖北冷季(2014年11月)发生的3次高架雷暴过程进行了分析。(1)3次过程发生在地面冷锋后部地面冷气团中,主要以短时强降水和频繁的雷电活动为主,是典型的冷季“高架雷暴”,对流区位于地面冷锋后部500 km左右。(2)地面到925 hPa的冷垫,迫使暖湿气流爬升,在925 hPa逆温层附近触发对流,冷垫之上西南暖湿气流越强,对流越旺盛,雷达径向速度剖面可以明显看到1 km之下的冷垫。(3)冷季高架雷暴雷电活动剧烈,CG(地闪)占总闪比例60%以上,而+CG则占CG的40%左右,闪电频次和降水有很好的时空对应关系,CG出现在较强降水中心附近及周围,IC和CG突增对降水均有一定的时间提前量。CG更靠近强回波中心,且和≥30 dBZ的回波位置对应较好,IC则分布在雷暴单体外侧回波强度≥15 dBZ的区域。0 ℃等温线以上的(最大)回波强度达到43 dBZ以上或者18 dBZ回波顶高超过7.5 km是湖北冷季高架雷暴是否发生雷电的重要预警因子。(4)地基微波辐射计温度、湿度廓线和探空曲线基本吻合,可以看到明显的冷垫、逆温层及西南急流。基于微波辐射计资料计算的不稳定指数变化特征对冷季高架雷暴的短临预报有重要的实际应用价值。当A指数、TT指数、K指数和T850-500出现快变抖动时,伴随抖动加剧可以判断将会有雷暴天气发生,当波动曲线开始下降并变得平稳,表示雷暴减弱消亡;θse 850在雷暴出现后跃增并在320 K附近抖动,雷暴结束后下落到290 K的平稳状态;Td850在雷暴活跃阶段近乎为0 ℃;T850-500在雷暴发生前是一个缓慢下降的过程,雷暴结束后大气趋于稳定。Abstract: Based on conventional observation, encrypted automatic station observation, three-dimensional lightning locator, Doppler weather radar of Wuhan and ground-based microwave radiometer data, the characteristics of three Convective Events in cold season (November 2014) were analyzed in Hubei Province. The results shows: (1) three cases produced short-term precipitation and lightning activities, and the convection area was located on the cold side 500 kilometers away from the surface front. (2) the warm and humid air flow are forced climbing by the cold pad from the ground to 925 hPa, while convection was triggered by convergence on 925 hPa. the cold pad below 1km can be seen clearly in the radar radial velocity profile. (3) cloud to ground lighting(CG) accounts for more than 60% of the total lightning, while positive cloud to ground lighting(+CG) accounts for about 40% of CG. The lightning frequency has a good time-space correspondence with precipitation, CG appeared near the center of strong precipitation, and the sudden increase of IC and CG has a certain time advance to precipitation. CG is closer to the center of strong echo(≥30 dBZ). IC is distributed in the area outside the thunderstorm cell, which with the echo ≥15 dBZ. The reflectivity of 43 dBZ above 0 ℃ isotherm or the ET height of 7.5 km, which are important indicators for the monitoring and early warning of lightning in cold season. (4) the temperature and humidity profiles of the ground-based microwave radiometer are consistent with the sounding curves, and cold pad, inversion layer and southwest jet can be seen obviously. The variation characteristics of instability index was calculated from the microwave radiometer data, which have important value for monitoring and early warning of elevated thunderstorm in cold season. While the index of A, TT, K and T850-500 changed rapidly, it can be judged that there will be thunderstorms. When the fluctuation curve begins to decline and become stable, it means that the thunderstorm will weaken and died out, when θse 850 jumped to 320 K after the thunderstorm occuring, which falled to a stable state of 290 K while the thunderstorm ending, when Td850 is nearly 0 ℃ during the life of thunderstorm, the water vapor in the lower layer was almost saturated, T850-500 was a slow decline process before thunderstorm, T850-500 maintained at 18~22 ℃ after thunderstorm appeared.
-
图 8 同图 7,但为2014年11月27日过程
图 9 同图 7,但为2014年11月29日过程
表 1 湖北3次冷季对流过程描述
个例时间 武汉08时24 h雨量/mm 降水最强中心 总闪频次/次 地闪(CG)频次 +CG占CG比例 武汉08时地面温度/℃ 对流发生位置 2014.11.23 59 武汉附近 375 292 65.44% 12 冷锋后部 2014.11.27 28 鄂东南 4814 3167 41.98% 11 冷锋后部 2014.11.29 20 鄂东北 3214 1913 46.91% 10 冷锋后部 表 2 TITAN风暴识别出的雷暴单体雷达和闪电特征
雷暴单体ID MAX_NCG T_MAX-NCG R_0 ℃ R_-10 ℃ R_-15 ℃ R_-20 ℃ R_-25 ℃ ET VIL_above0 ℃ R_above0 ℃ 23ID_0 4 23:42 43.6 31.8 28.9 26.8 21.5 8.5 6.9 43.5 23ID_1 5 22:54 46.5 36 31.4 27.4 23.8 8.7 4.3 46.5 24ID_2 5 00:12 45.8 35.5 27.7 23.6 22.4 7.8 6.7 46 24ID_3 2 02:48 52.9 37.5 29.8 24.1 20.6 7.6 16.8 51.5 27ID_0 12 09:12 44.7 36.8 35 31.2 26.8 9.2 5.9 44.7 27ID_1 16 11:06 46.4 37.2 34.2 32.8 31.4 8.6 6.9 46.4 27ID_2 19 12.24 43.6 41 39.9 36.6 31.5 9.1 8.4 46 27ID_3 14 14:54 43.3 34.1 33.5 31.7 27.5 9 2.8 43.5 27ID_4 8 16:00 46.1 39.7 36.1 33.9 31.7 8.8 4.6 46.1 29ID_0 9 07:30 58.7 53 45.8 35.1 25.7 7.6 39.2 60 27ID_1 8 10:42 47 38.1 36.9 30.3 22.5 7.8 7.4 47.5 27ID_2 10 13:00 45.1 39.6 34.8 27.2 20.4 7.5 5.3 45.1 27ID_3 8 12:48 49.9 48 41.4 36.4 32.9 7.7 15.1 51 27ID_4 10 14:42 48.4 39.9 36.9 30.3 24.9 8 8.4 48.4 备注:雷暴单体ID指TITAN识别出影响武汉降水的雷暴单体编号;T_MAX-NCG和MAX_NCG分别指雷暴演变过程中单体半径50 km范围内CG出现最多的时刻及频次;R_0 ℃、R_-10 ℃、R_-15 ℃、R_-20 ℃、R_-25 ℃分别指0 ℃、-10 ℃、-15 ℃、-20 ℃、-25 ℃等温层高度PPI上的回波强度(单位:dBZ);ET指18 dBZ回波所能到达的最大高度(单位:km);VIL_above0 ℃指0 ℃等温层18 dBZ回波高度的垂直积分液态含水量(单位:kg/m2);R_above0 ℃指0 ℃等温层以上的最大回波强度(单位:dBZ)。 -
[1] 王学良, 余田野, 朱传林, 等.我国中部五省雷暴日时空分布特征[J].热带地理, 2013, 33(1):13-20. [2] 金晨路, 肖稳安, 王学良.湖北省雷电灾害易损性分析与区划[J].暴雨灾害, 2011, 30(3): 272-276. [3] 赖悦, 张其林, 陈洪滨, 等.深圳一次强飑线过程的闪电频数与天气雷达回波关系分析[J].热带气象学报, 2015, 31(4): 549-558. [4] 王晨曦, 郑栋, 张义军, 等.一次雹暴过程的闪电活动特征及其与雹暴结构的关系[J].热带气象学报, 2014, 30(6): 1 127-1 136. [5] COLMAN B R. Thunderstorms above frontal surfaces in environments without positive CAPE. PartⅠ: A climatology[J]. Mon Wea Rev, 1990a, 118(5):1103-1121. [6] COLMAN B R. Thunderstorms above frontal surfaces in environments without positive CAPE. Part Ⅱ : Organization and instability mechanisms[J]. Mon Wea Rev, 1990b, 118(5): 1 123-1 144. [7] GRANT B N. Elevated cold-sector severe thunderstorms: A preliminary study[J]. Natl Wea Dig, 1995, 19(4): 25-31. [8] ROCHETTE S M, MOORE J T. Initiation of an elevated mesoscale convective system associated with heavy rainfall[J]. Wea Forecasting, 1996, 11(4): 444-457. [9] HORGAN K L, SCHULTZ D M, HALES JR J E, et al. A five-year climatology of elevated severe convective storms in the United States east of the Rocky Mountains[J]. Wea Forecasting, 2007, 22(5): 1 031-1 044. [10] 俞小鼎, 周小刚, 王秀明.中国冷季高架对流个例初步分析[J].气象学报, 2016, 74(6): 902-918. [11] 盛杰, 毛冬艳, 沈新勇, 等.我国春季冷锋后的高架雷暴特征分析[J].气象, 2014, 40(9): 1 058-1 065. [12] MOORE J T, GLASS F H, Rochette S M, et al. The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central united states[J]. Wea Forecasting, 2003, 18(5): 861-878. [13] 刘鹏, 李书文.气旋爆发性发展产生的北方冬季雷暴天气分析[J].气象, 1998, 24(5): 47-51. [14] 苏德斌, 焦热光, 吕达仁.一次带有雷电现象的冬季雪暴中尺度探测分析[J].气象, 2012, 38(2): 204-209. [15] 吴乃庚, 林良勋, 冯业荣, 等. 2012年初春华南"高架雷暴"天气过程成因分析[J].气象, 2013, 39(4): 410-417. [16] 农孟松, 赖珍权, 梁俊聪, 等. 2012年早春广西高架雷暴冰雹天气过程分析[J].气象, 2013, 39(7): 874-882. [17] 郭大梅, 章丽娜, 王秀明, 等. 2016年初冬陕西一次高架雷暴天气过程分析[J].气象, 2018, 44(11): 1 404-1 413. [18] 张一平, 俞小鼎, 孙景兰, 等. 2012年早春河南一次高架雷暴天气成因分析[J].气象, 2014, 40(1):48-58. [19] 刘洲洋, 俞小鼎, 王秀明, 等.中国泛华北地区冷季高架对流特征气候统计分析[J].气象, 2018, 44(2): 258-267. [20] 苟阿宁, 韩芳蓉, 张文刚, 等.地基微波辐射计观测资料在一次雷电潜势预报中的应用分析[J].热带气象学报, 2018, 34(2): 268-278. [21] 唐仁茂, 李德俊, 向玉春, 等.地基微波辐射计对咸宁一次冰雹天气过程的监测分析[J].气象学报, 2012, 70(4): 806-813. [22] 朱传林, 李国梁, 张弛儿, 等.湖北省三维闪电定位系统定位误差仿真分析[J].暴雨灾害, 2017, 36(1): 91-96. [23] 刘健文, 郭虎, 李耀东, 等.天气分析预报物理量计算基础[M].北京:气象出版社.2005. [24] 俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展[J].气象学报, 2012, 70(3): 311-337.