STUDY ON THE ACCURACY OF DOPPLER WIND LIDAR IN MEASURING THE BOUNDARY LAYER WIND FIELD OF TYPHOON LEKIMA
-
摘要: 多普勒激光雷达在台风等强天气背景下的探测能力亟待研究,为此将多普勒激光雷达与70 m测风塔超声风温仪在同址同高度探测台风“利奇马”影响期间的边界层风场数据进行对比,并分析多普勒激光雷达的误差分布以及变化情况。结果显示:在高度70 m上,两者的水平风速、风向相关系数分别为0.97和0.99,垂直风速的相关系数为0.36。以超声风温仪为参考值,激光雷达水平风速、垂直风速和风向均方根误差分别为1.06 m/s、0.46 m/s和17.10 °。深入研究表明:降水对多普勒激光雷达测量水平风速和垂直风速误差均有一定影响。当激光雷达信噪比大于2 000时,各参量的误差与信噪比呈负相关关系。研究表明多普勒激光雷达至少可以较好地刻画台风环流内的水平风场结构及演变,可应用于台风外围环流影响下(即较弱降雨条件下)边界层风场的高分辨率探测和研究。Abstract: The detection capability of Doppler wind lidar (DWL) in strong weather such as typhoon needs to be studied urgently. In the present study, the boundary layer wind field data collected by Doppler lidar and 70 meter wind tower ultrasonic wind thermometer at the same location and height are compared, and the error distribution and variation of Doppler lidar data are analyzed. The results show that, at the height of 70 meters, the correlation coefficients of horizontal wind speed and wind direction are 0.97 and 0.99, respectively, and the correlation coefficient of vertical wind speed is 0.36. With ultrasonic wind thermometer data as reference, it is found that the root mean square errors of horizontal wind speed, vertical wind speed and wind direction of lidar are 1.06 m/s, 0.46 m/s and 17.10 ℃, respectively. Precipitation can affect the horizontal and vertical wind speeds measured by DWL. When the signal-tonoise ratio of lidar is greater than 2 000, the error of each parameter is negatively correlated with the signal-to-noise ratio. The detection results show that DWL can characterize the distribution and evolution of horizontal wind field, and thus can be used in the high-resolution detection and research of boundary layer wind field under the influence of typhoon peripheral circulation, i.e., under weak rainfall conditions.
-
Key words:
- typhoon /
- Doppler wind lidar /
- ultrasonic anemometer /
- boundary layer wind
-
图 14 同图 11,但为水平风向误差
图 17 同图 11,但为垂直风速误差
表 1 WindPrint S4000多普勒激光雷达性能参数
主要指标 参数 最大探测距离 4 000 m 微光波长 1 550 nm, 人眼安全不可见 数据更新速率 1 Hz 常规环境风速测量精度 < 0.1 m/s 常规环境风向测量精度 < 3 ° 扫描方式 DBS 重量 < 100 kg 平均功率 800 W, 常温下 < 300 W 表 2 不同时段观测误差统计结果
时间段 R与RMSE 水平风速观测 水平风向观测 垂直风速观测 影响前期 R 0.84 1.00 0.13 RMSE 1.04 5.27 0.62 影响期 R 0.95 1.00 0.59 RMSE 1.71 7.47 0.44 影响后期 R 0.95 0.97 0.33 RMSE 0.52 23.87 0.32 注:R为相关系数,RMSE为均方根误差。其中水平风速与垂直风速的RMSE单位是:m/s,水平风向的RMSE单位是:°。 表 3 降水与非降水条件下误差统计结果
不同条件 R与RMSE 水平风速观测 水平风向观测 垂直风速观测 非降水 R 0.97 0.99 0.27 RMSE 0.94 17.55 0.45 降水 R 0.94 1.00 0.48 RMSE 2.08 10.32 0.59 总体 R 0.97 0.99 0.36 RMSE 1.06 17.10 0.46 -
[1] 史双瑾, 邱琪, 廖云.多普勒激光雷达在风场测量中的应用[C]//中国通信学会.中国通信学会第五届学术年会论文集. 2008: 728-733. [2] 黄晨.捕捉风的信息: 测风激光雷达[C].风能产业, 2017: 78-79. [3] 马福民, 陈涌, 杨泽后, 等.激光多普勒测风技术最新进展[J].激光与光电子学进展, 2019, 56(18): 31-42. [4] HUFFAKER R M. Laser Doppler detection systems for gas velocity measurements[J]. Applied Optics, 1970, 9(5): 1 026-1 039. [5] 张小雯, 郑永光, 吴蕾, 等.风廓线雷达资料在天气业务中的应用现状与展望[J].气象科技, 2017, 45(2): 285-297. [6] COURTNEY M, WANGER R, LINDELOW P. Testing and comparison of lidars for profile and turbulence measurements in wind energy[C]// IOP Conference Series: Earth and Environmental Science, 2008, 1 (1): 12-21. [7] SHU Z R, LI Q S, HE Y C, et al. Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications[J]. Applied Energy, 2016, 169: 150-163. [8] 李程, 李欢, 王慧, 等. 1509号台风灿鸿期间"朱家尖-嵊山"高频地波雷达数据分析[J].海洋学研究, 2017, 35(1): 41-46. [9] ZHANG J, ATLAS R, EMMITT G, et al. Airborne Doppler wind lidar observations of the tropical cyclone boundary layer[J]. Remote Sensing, 2018, 10(6): 825. [10] 陈涌, 周秉直, 谭锦, 等.机载激光多普勒测风雷达技术及其应用[J].激光技术, 2011, 35(6): 795-799. [11] 周艳宗, 王冲, 刘燕平, 等.相干测风激光雷达研究进展和应用[J].激光与光电子学进展, 2019, 56(2): 9-26. [12] 范琪, 朱克云, 郑佳锋, 等.不同天气类型下全光纤相干激光测风雷达探测性能分析[J].中国激光, 2017, 44(2): 326-335. [13] 周安然, 韩於利, 孙东松, 等.高光学效率相干多普勒激光雷达的测风性能分析与测试[J].红外与激光工程, 2019, 48(11): 76-82. [14] 李志刚, 孙泽中, 赵增亮, 等.机载光纤多普勒测风激光雷达风场反演及实验验证[J].应用光学, 2016, 37(5): 765-771. [15] 唐磊, 董吉辉, 吴海滨.多普勒测风激光雷达风场探测结果分析[J].强激光与粒子束, 2012, 24(9): 2 037-2 042. [16] SMITH D A, MICHAEL H, COFFEY A S, et al. Wind lidar evaluation at the Danish wind test site in Hovsore[J]. Wind Energy, 2006, 9(1- 2) : 87-93. [17] PEFIA A, HASAGER C B, GRYNING S E, et al. Offshore wind profiling using light detection and ranging measurements[J]. Wind Energy, 2009, 12(2): 105-124. [18] PU Z X, ZHANG L, EMMITT G D. Impact of airborne Doppler wind lidar profiles on numerical simulations of a tropical cyclone[J]. Geophys Res Lett, 2010, 37(5): 137-147. [19] WEISSMANN M, LANGLAND R H, CARDINALI C, et al. Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts[J]. Quart J R Meteor Soc, 138(662): 118-30. [20] BUCCI L R, O'HANDLEY C, EMMITT G D, et al. Validation of an airborne Doppler wind lidar in tropical cyclones[J]. Sensors, 2018, 18 (12): 14. [21] 赵林, 杨绪南, 方根深, 等.超强台风山竹近地层外围风速剖面演变特性现场实测[J].空气动力学学报, 2019, 37(1): 43-54. [22] 宋小全, 王芳涵, 尹嘉萍, 等.多普勒测风激光雷达三波束反演方法与实验[J].中国海洋大学学报(自然科学版), 2020, 50(4): 136-144. [23] 刁伟峰, 刘继桥, 竹孝鹏, 等.全光纤相干多普勒激光雷达非线性最小二乘风速反演方法及实验研究[J].中国激光, 2015, 42(9): 338- 343. [24] 陈玉宝, 高玉春, 刘秉义, 等.基于切比雪夫方法的多普勒激光雷达高空风场垂直探测精度的评估分析[J].热带气象学报, 2014, 30(2): 327-344. [25] TANG J, BYRNE D, ZHANG J A, et al. Horizontal transition of turbulent cascade in the near-surface layer of tropical cyclones[J]. J Atmos Sci, 2015, 72(12): 4 915-4 925. [26] FANG P Z, ZHAO B K, ZENG Z H, et al. Effects of wind direction on variations in friction velocity with wind speed under conditions of strong onshore wind[J]. J Geophys Res Atmos, 2018, 123(14): 7 340-7 353. [27] 邱传涛, 李丁华.平均风向的计算方法及其比较[J].高原气象, 1997, 16(1): 95-99.