ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广东地区一次飑线过程的地面雨滴谱特征分析

冯璐 陆海琦 李丰 刘显通 肖辉 潘晓 夏丰

冯璐, 陆海琦, 李丰, 刘显通, 肖辉, 潘晓, 夏丰. 广东地区一次飑线过程的地面雨滴谱特征分析[J]. 热带气象学报, 2020, 36(5): 626-637. doi: 10.16032/j.issn.1004-4965.2020.057
引用本文: 冯璐, 陆海琦, 李丰, 刘显通, 肖辉, 潘晓, 夏丰. 广东地区一次飑线过程的地面雨滴谱特征分析[J]. 热带气象学报, 2020, 36(5): 626-637. doi: 10.16032/j.issn.1004-4965.2020.057
Lu FENG, Hai-qi LU, Feng LI, Xian-tong LIU, Hui XIAO, Xiao PAN, Feng XIA. CHARACTERISTICS OF THE RAINDROP SIZE DISTRIBUTION IN A SQUALL LINE MEASURED BY TWO-DIMENSIONAL VIDEO DISDROMETER IN GUANGDONG[J]. Journal of Tropical Meteorology, 2020, 36(5): 626-637. doi: 10.16032/j.issn.1004-4965.2020.057
Citation: Lu FENG, Hai-qi LU, Feng LI, Xian-tong LIU, Hui XIAO, Xiao PAN, Feng XIA. CHARACTERISTICS OF THE RAINDROP SIZE DISTRIBUTION IN A SQUALL LINE MEASURED BY TWO-DIMENSIONAL VIDEO DISDROMETER IN GUANGDONG[J]. Journal of Tropical Meteorology, 2020, 36(5): 626-637. doi: 10.16032/j.issn.1004-4965.2020.057

广东地区一次飑线过程的地面雨滴谱特征分析

doi: 10.16032/j.issn.1004-4965.2020.057
基金项目: 

国家重点研发计划 2017YFC1501701

广东省科技计划项目 2017B020244002

国家自然科学基金 41975138

国家自然科学基金 41705020

国家自然科学基金 41705120

国家自然科学基金 41705011

国家自然科学基金 41905047

国家自然科学基金 41975046

广东省自然科学基金项目 2019A1515010814

广东省自然科学基金项目 2018A030313969

详细信息
    通讯作者:

    刘显通,男,江西省人,副研究员,主要从事云降水物理研究。E-mail:xtliu@gd121.cn

  • 中图分类号: P445

CHARACTERISTICS OF THE RAINDROP SIZE DISTRIBUTION IN A SQUALL LINE MEASURED BY TWO-DIMENSIONAL VIDEO DISDROMETER IN GUANGDONG

  • 摘要: 利用3台二维视频雨滴谱仪(2DVD)、广州S波段双偏振雷达以及C-FMCW雷达资料,分析广东地区2017年5月8日一次飑线过程不同降水部位的雨滴谱特征。根据雨强随时间变化,区分对流降水区,同时以对流降水区为分界线,将此次飑线过程划分为飑线前部、飑线中部和飑线后部。结果表明,飑线不同降水部位雨滴谱特征存在明显的差别。飑线前部,粒子谱分布变化剧烈,中小粒径的粒子居多,粒子数浓度较飑线中部偏低;飑线中部,粒子分布较分散,中等粒子比重较高,粒子数浓度最高,雨强的增加主要与雨滴数浓度有关;飑线后部,降水粒子分布较集中,且以高浓度中小粒子为主。另外,还研究了μ-Λ关系和Z-R关系。μ-Λ之间存在较好的二项式关系;不同降水部位Z-R关系差异较大,分别为Z=8.94R2.70Z=526.98R1.22Z=467.56R1.42。飑线不同部位雨滴谱演变特征存在一些明显差别,同时,同一部位不同空间位置也存在着一定的差异。

     

  • 图  1  中国气象局龙门云物理野外科学试验基地分布图

    图  2  a.雷达回波强度随时间变化;b. C-FMCW雷达回波强度时空变化;c. C-FMCW反射率因子垂直廓线;d. C-FMCW反射率因子随高度的概率分布。

    图  3  LM站雨滴谱参数以及偏振参数随时间变化

    a.雨滴谱;b.雨强;c.水平反射率因子;d.雨滴质量加权直径;e.新增差分反射率;f.粒子数浓度。黑色实线为2DVD观测结果;蓝色叉号为双偏振雷达反演结果。

    图  4  图 3,但为FG站

    图  5  图 3,但为XF站

    图  6  不同降水部位的Dm-lg10Nw的柱状分布

    图  7  Dm-lgNw分布

    图  8  不同降水部位的Dm-R(a)和Nw-R(b)分布

    绿色虚线、红色虚线、蓝色虚线分别为LP、CP、TP阶段的拟合线。

    图  9  不同降水部位的雨滴谱分布

    图  10  雨强R > 5 mm/h且Nt > 1 000的μ-Λ散点分布

    图  11  Z-R散点分布

    深绿色实线、深红色实线、深蓝色实线分别为所有站点LP、CP、TP阶段的拟合线。

    表  1  C-FMCW垂直探测雷达系统主要技术参数

    序号 参数 指标
    1 工作频率 5 530 MHz±3 MHz/±3.5 MHz
    2 探测方式 固定垂直指向探测
    3 探测量程 0.015~24 km
    4 重复周期 600 μs、700 μs
    5 扫描带宽 6MHz±3 MHz/±3.5MHz
    6 时间分辨率 3 s
    7 距离库长、库数 库长:15 m、30 m,库数:800、500
    8 探测能力 15 km高度处探测能力低于-20 dBZ
    9 天线型式 收发分置、抛物面
    10 天线增益 ≥35 dB
    11 波束宽度 ≤2.6 °
    12 发射功率 ≥150 W
    13 接收通道动态范围 ≥82 dB
    14 信号处理 二次FFT
    15 数据输出 功率谱密度分布、谱参数
    下载: 导出CSV

    表  2  广州S波段双偏振雷达主要数据参数

    序号 项目天线系统 参数 序号 项目接收机 参数
    1 形状 旋转抛物面 12 最小可测功率 ≤-109 dBm(1.57 μs)
    2 直径 8.5 m 13 噪声系数 ≤4 dB
    3 波瓣宽度 ≤1 °(3 dB) 14 动态范围 ≥85 dB
    4 天线增益 ≥44 dB 15 分辨率 250~1 000 m探测精度
    5 天线方向 水平/垂直极化波束主轴方向差≤0.1 ° 16 强度Z ≤1 dB
    6 双通道发射机 ≥30 dB 17 速度V/谱宽W ≤1 m/s
    7 工作频率 2 885 MHz 18 差分反射率因子ZDR ≤0.2 dB
    8 峰值功率 ≥650 kW 19 差分传播相移ΦDP ≤0.2 °
    9 脉冲宽度 1.57 μs,4.7 μs 20 差分传播相移率KDP ≤0.2 °/km
    10 脉冲重复频率 322~1 304 Hz 21 相关系数CC ≤0.01
    11 工作模式 收发体制
    下载: 导出CSV

    表  3  不同站点不同降水部位雨滴谱参数以及偏振参数平均值

    站点 阶段 样本个数/min R/(mm/h) ZH/dB
    Z2DVD/S-Pol
    ZDR/dB2
    DVD/
    Dm/mm
    2DVD/
    lgNw/(mm-1·m-3)
    2DVD/S-Pol
    LM LP 28 4.32 30.00/34.40 0.95/1.77 2.02/2.05 2.63/3.07
    CP 37 19.42 42.99/40.35 1.32/1.68 1.99/2.03 3.60/3.63
    TP 228 3.34 32.31/32.39 0.86/0.85 1.62/1.62 3.23/3.70
    FG LP 12 2.31 25.63/24.00 0.55/0.46 1.43/1.36 3.09/3.46
    CP 65 35.17 44.87/45.08 1.20/1.50 1.83/1.96 4.02/4.26
    TP 275 2.94 31.54/30.29 0.80/0.89 1.53/1.63 3.33/3.54
    XF LP 23 1.89 25.32/23.83 0.57/0.46 1.74/1.39 2.70/3.41
    CP 24 20.57 40.33/42.30 1.02/1.01 1.37/1.58 4.41/4.52
    TP 244 2.57 31.03/32.46 0.85/0.76 1.65/1.53 3.10/3.43
    下载: 导出CSV
  • [1] 丁一汇, 李鸿洲, 章名立.我国飑线发生条件的研究[J].大气科学, 1982, 6(1):18-27.
    [2] MENG Z, ZHANG F, MARKOWSKI, et al. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China[J]. J Atmos Sci, 2012, 69(4):1 182-1 207.
    [3] ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 1988, 45(3):463-485.
    [4] 刘黎平, 牟容, 许小永, 等.一次飑线过程的动力和微物理结构及滴谱变化对降水估测的影响研究[J].气象学报, 2007, 65(4):601-611.
    [5] 郑腾飞, 黄健, 万齐林, 等.一次华南海岸带台前飑线的结构特征与环境条件的观测研究[J].热带气象学报, 2017, 33(6):933-944.
    [6] 曹倩, 张述文, 曹帮军, 等.超强不稳定和弱切变环境下一次飑线过程的雷达资料同化与分析[J].热带气象学报, 2016, 32(5):645-655.
    [7] 方翀, 林隐静, 曹艳察, 等.华南地区西风带飑线和台风飑线环境场特征统计对比分析[J].热带气象学报, 2017, 33(6):965-974.
    [8] KIRANKUMAR N V P, RAO T N, RADHAKRISHNA B, et al. Statistical characteristics of raindrop size distribution in Southwest Monsoon Season[J]. J Appl Meteor Climat, 2008, 47(2):576-590.
    [9] 王慧娟, 熊守权, 李德俊, 等.基于激光雨滴谱仪的一次降水云滴谱特征分析[J].高原山地气象研究, 2013, 33(1):17-22.
    [10] 牛生杰, 安夏兰, 桑建人.不同天气系统宁夏夏季降雨谱分布参量特征的观测研究[J].高原气象, 2002, 21(1):37-44.
    [11] 吴兑.宁夏一次暴雨的地面雨滴谱和雷达反射因子的对比分析[J].高原气象, 1987, 6(4):366-370.
    [12] 朱亚乔, 刘元波.地面雨滴谱观测技术及特征研究进展[J].地球科学进展, 2013, 28(6):685-694.
    [13] 宫福久, 李子华.一次北上台风降水微结构演变特征[J].气象科学, 1997(4):335-343.
    [14] 冯雷, 陈宝君.利用PMS的GBPP-100型雨滴谱仪观测资料确定Z-R关系[J].气象科学, 2009, 29(2): 192-198.
    [15] 周毓荃, 刘晓天, 周非非, 等.河南干旱年地面雨滴谱特征[J].应用气象学报, 2001, 12(s1): 40-47.
    [16] 李淘, 阮征, 葛润生, 等.激光雨滴谱仪测速误差对雨滴谱分布的影响[J].应用气象学报, 2016, 27(1):25-34.
    [17] 胡子浩, 濮江平, 濮云涛, 等.南海一次海洋性对流云降水雨滴谱特征分析[J].热带气象学报, 2014, 30(1):181-188.
    [18] 岳治国, 梁谷.陕西渭北一次降雹过程的粒子谱特征分析[J].高原气象, 2018, 37(6):270-278.
    [19] 肖现, 廖菲, 肖辉, 等.北京对流性降水的雨滴尺寸分布瞬时特征与雷达降水的关系[J].热带气象学报, 2010, 26(4):445-453.
    [20] THURAI M, GATLIN P N, BRINGI V N. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data[J]. Atmos Res, 2015, 169:416-423.
    [21] WEN L, ZHAO K, ZHANG G, et al. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data[J]. Geophy Res, 2016, 121(5): 2 265-2 282.
    [22] 陈磊. 2009-2010年江淮梅雨锋暴雨雨滴谱特征的观测分析[D].南京: 南京信息工程大学, 2011.
    [23] ZHANG G F, VIVEKANANDAN, et al. The shape-slope relation in observed gamma raindrop size distributions:Statistical error or useful information?[J]. J Atmos Ocean Techn, 2003, 20(8):1 106-1 119.
    [24] BRAWN D, UPTON G. On the measurement of atmospheric gamma drop-size distributions[J]. Atmos Sci Lett, 2008, 9(4):245-247.
    [25] 刘黎平, 葛润生, 张沛源.双偏振多普勒天气雷达遥测降水强度和液态含水量的方法和精度研究[J].大气科学, 2002, 26(5):709-720.
    [26] ROSENFELD D, ULBRICH C W. Cloud microphysical properties, processes, and rainfall estimation opportunities[M]// Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. 2003: 237-237.
    [27] ULBRICH C W, ATLAS D. Rainfall Microphysics and Radar Properties:Analysis Methods for Drop Size Spectra[J]. J Appl Meteor, 1998, 37(9):912-923.
    [28] 巩兴晖, 朱德兰, 张林, 等.基于2DVD的非旋转折射式喷头水滴直径分布规律[J].农业机械学报, 2014, 45(8):128-133.
    [29] 阮征, 金龙, 葛润生, 等. C波段调频连续波天气雷达探测系统及观测试验[J].气象学报, 2015, 73(3): 577-592.
    [30] 金龙. C波段FMCW天气雷达探测试验和应用研究[D].成都: 成都信息工程学院, 2015.
    [31] TESTUD J, OURY S, BLACK R A, et al. The concept of"normalized"distribution to describe raindrop spectra:A tool for cloud physics and cloud remote sensing[J]. J Appl Meteor, 2001, 40(6):1 118-1 140.
    [32] TOKAY A, PETERSEN W A, GATLIN P, et al. Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers[J]. J Atmos Ocean Techn, 2013, 30(8):1 672-1 690.
    [33] LIU X T, WAN Q L, WANG H, et al. Raindrop size distribution parameters retrieved from Guangzhou S-band polarimetric radar observations[J]. J Meteor Res, 2018, 32(4):571-583, doi:10.1007/s13351-018-7152-4.
    [34] 冯璐, 夏丰, 万齐林, 等.广东两次飑线过程的微物理特征分析研究[J].热带气象学报, 2019, 35(6):812-821.
    [35] BEARD K V. Terminal Velocity Adjustment for Cloud and Precipitation Drops Aloft[J]. Journal of the Atmospheric ences, 1978, 34(8): 1 293-1 298.
    [36] CHEN B, YANG J, PU J. Statistical Characteristics of raindrop size distribution in the Meiyu season observed in Eastern China[J]. J Meteor Soc Japan, 2013, 91(2):215-227.
    [37] 温龙.中国东部地区夏季降水雨滴谱特征分析[D].南京: 南京大学, 2016.
    [38] BEARD K V, BRINGI V N, THURAI M. A new understanding of raindrop shape[J]. Atmos Res, 2010, 97(4):396-415.
    [39] BERNE A, KRAJEWSKI W F. Radar for hydrology:Unfulfilled promise or unrecognized potential?[J]. Advances in Water Resources, 2013, 51(1):357-366.
    [40] HU Z L, SRIVASTAVA R C. Evolution of raindrop size distribution by coalescence, breakup, and evaporation: theory and observations[J]. J Atmos Sci, 1995, 52(52):1761-1783.
    [41] BRINGI V N, CHANDRASEKAR V, HUBBERT J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dualpolarized radar analysis[J]. J Atmos Sci, 2003, 60(2):354-365.
    [42] 王俊, 姚展予, 侯淑梅, 等.一次飑线过程的雨滴谱特征研究[J].气象学报, 2016, 74(3):450-464.
    [43] 金祺, 袁野, 纪雷, 等.安徽滁州夏季一次飑线过程的雨滴谱特征[J].应用气象学报, 2015, 26(6):725-734.
    [44] MAKI M, KEENAN T D, SASAKI Y, et al. Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia[J]. J Appl Meteor, 2001, 40(8):1 393-1 412.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  23
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 修回日期:  2020-06-28
  • 刊出日期:  2021-01-11

目录

    /

    返回文章
    返回