STUDY ON IMPACTS OF DYNAMIC DOWNSCALING AND MULTI-PHYSICAL PARAMETERIZATION SCHEME COMBINATION ON ENSEMBLE FORECAST OF ANNUALLY FIRST RAINY SEASON IN SOUTH CHINA
-
摘要: 针对华南前汛期降水过程,基于全球集合预报系统(GEFS)资料,利用WRF中尺度模式以及GEFS动力降尺度获取的区域集合预报初值场,通过多物理过程参数化方案组合和模式积分方法实现华南前汛期降水的区域集合预报。对2019年5月15日—6月15日共32天的华南前汛期降水过程进行了单一物理过程区域集合预报(REFS_SINGLE)和多物理过程区域集合预报(REFS_MULTI)的数值模拟批量敏感性试验,通过GEFS、REFS_SINGLE和REFS_MULTI的对比分析,探讨多物理过程参数化方案组合对华南前汛期降水的影响,同时利用一次华南前汛期暴雨过程进一步探讨集合预报试验的预报效果。结果表明:(1)REFS集合平均的预报效果明显好于控制性预报。(2)REFS降水集合离散度与预报误差的对应关系好于GEFS。(3)积分48小时后,REFS_MULTI和REFS_SINGLE的扰动能量分别是GEFS的4.7倍和6.3倍。(4)降水级别越大,REFS的TS评分效果就越好于GEFS;REFS_MULTI略微好于REFS_SINGLE。(5)基于32天的批量试验,REFS的AUC值有28天大于GEFS,REFS_MULTI有22天大于REFS_SINGLE,表明REFS的预报技巧好于GEFS,且REFS_MULTI的预报技巧好于REFS_SINGLE。Abstract: Based on the Global Ensemble Forecast System (GEFS) data, the WRF model and the GEFS dynamic downscaling method are used to obtain the regional ensemble forecast initial states. And through the combination of multi-physical process parameterization schemes and model integration method, the regional ensemble forecast of precipitation in the annually first rainy season in south China is realized. A batch test of single physical process regional ensemble forecast system (REFS_SINGLE) and multi-physical process regional ensemble forecast system (REFS_MULTI) are carried out for the 32-day precipitation period in south China from May 15 to June 15, 2019. Through the comparative analysis of GEFS, REFS_SINGLE and REFS_MULTI, the influence of multi-physical process parameterization scheme combination on precipitation in the annually first rainy season in south China is explored. Meanwhile, a precipitation case in the annually first rainy season in south China is used to further explore the forecasting performance of different ensemble forecasts. The results are as follows. (1) The ensemble mean of REFS is significantly better than that of the control forecast. (2) The correspondence between the precipitation ensemble spread and the forecast error of the REFS is better than that between the precipitation ensemble spread and the forecast error of the GEFS. (3) After 48h, the perturbation energy of the REFS_MULTI and the REFS_SINGLE are 4.7 times and 6.3 times that of the GEFS, respectively. (4) The higher the precipitation level, the higher the TS score of the REFS than that of the GEFS; the REFS_MULTI is slightly better than the REFS_SINGLE. (5) Based on the 32-day batch test, the AUC value of REFS is greater than that of GEFS for 28 days, and REFS_MULTI is greater than REFS_SINGLE for 22 days, indicating that the forecasting skills of REFS are better than that of GEFS, and the forecasting skills of REFS_MULTI are better than that of REFS_SINGLE.
-
表 1 多物理参数化方案
方案 方案名称 代码 云微物理参数化方案 WDM6 1 Thompson 2 Morrison 3 积云对流参数化方案 Kain-Fritsch 1 BMJ 2 Grell-Freitas 3 边界层参数方案 YSU 1 MYJ 2 MYNN2 3 陆面过程参数化方案 Thermal Diffusion 1 Noah 2 CLM4 3 长波辐射参数方案 RRTMG 1 CAM 2 GFDL 3 短波辐射参数化方案 RRTMG 1 CAM 2 GFDL 3 表 2 21个集合成员物理参数化方案组合
成员编号 代码组合 00 1,1,1,1,1,1 01 2, 1, 1, 1, 1, 3 02 3,1,1,1,1,2 03 1,2,1,1,2,1 04 2,2,1,1,2,3 05 3, 2,1,1,2, 2 06 1,3,1,1,3,1 07 2, 3, 2, 2, 3, 3 08 3, 3, 2, 2, 3, 2 09 1,1,2, 2,1,1 10 2,1,2,2,1,3 11 3,1,2, 2,1,2 12 1,2,2,2,2,1 13 2, 2, 2, 2, 2, 3 14 3, 2, 3, 3, 2, 2 15 1,3,3,3,3,1 16 2,3,3,3,3,3 17 3,3,3,3,3,2 18 1,1,3, 3,1,1 19 2,1,3, 3,1,3 20 3,1,3, 3,1,2 注:代码组合顺序:云微物理参数化方案,积云参数化方案,边界层参数化方案,陆面过程参数化方案,长波辐射参数化方案,短波辐射参数化方案。 表 3 预报观测列联表
类别 预报发生 预报不发生 观测发生 a b 观测不发生 c d 表 4 142019年5月15日-6月15日逐日08时起报不同集合预报方案24~48 h不同降水类型集合平均累积降水TS评分平均值
试验 小雨 中雨 大雨 REFS_MULTI 0.3583 0.2084 0.1019 REFS_SINGLE 0.3525 0.2018 0.1006 GEFS 0.3242 0.1513 0.0176 -
[1] 杜钧, 李俊.集合预报方法在暴雨研究和预报中的应用[J].气象科技进展, 2014, 4(5): 6-20. [2] 张涵斌, 陈静, 智协飞, 等.GRAPES区域集合预报系统应用研究[J].气象, 2014, 40(9): 1076-1087. [3] 钟有亮, 陈静, 王静, 等莉.GRAPES区域集合预报系统对登陆台风预报的检验评估[J].热带气象学报, 2017, 33(6): 953-964. [4] TOTH Z, KALNAY E.Ensemble forecasting at NCEP and the breeding method[J].Mon Wea Rev, 1997, 125(12): 3297-3319. [5] 于永锋, 张立凤.基于增长模繁殖法的集合预报初始扰动饱和分析[J].大气科学, 2005(6): 113-122. [6] BUIZZA R, PALMER T N.The singular-vector structure of the atmospheric global circulation[J].J Atmos Sci, 1995, 52(9): 1434-1456. [7] HOFFMAN R N, KALNAY E.Lag ged average forecasting.an alternative to M onte Carlo forecasting[J].Tellus, 1983, 35A: 100-118. [8] FROGNER I L, HAAKENSTAD H, IVERSEN T.Limited-area ensemble predictions at the Norwegian Meteorological Institute[J].Quarterly Journal of the Royal Meteorological Society, 2006, 132(621): 2785-2808. [9] LIU X, COULIBALY P.Downscaling Ensemble Weather Predictions for Improved Week-2Hydrologic Forecasting[J].Journal of Hydrometeorology, 2011, 12(6): 1564-1580. [10] ZOBEL Z, WANG J, WUEBBLES D J, et al.High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States[J].Earth\"s Future, 2017, 5(12): 1234-1251. [11] 张涵斌, 李玉焕, 范水勇, 等.基于动力降尺度的区域集合预报初值扰动构建方法研究[J].气象, 2017, 43(12): 1461-1472. [12] 庄潇然.对流尺度集合预报中的多尺度初始扰动方法研究[D].南京信息工程大学, 2016. [13] 谭燕, 陈德辉.基于非静力模式物理扰动的中尺度集合预报试验[J].应用气象学报, 2007(3): 396-406+418. [14] JUN DU, JEFF MCQUEEN, GEOFF DIMEGO, et al.The NOAA/NWS/NCEP short range ensemble forecast(SREF)system: Evaluation of an initial condition vs multiple model physics ensemble approach[C].20th Conf on Weather Analysis and Forecasting.Seattle, WA, Amer Meteor Soc, 2004, 21.3. [15] ZHANG, X B, et al.The Impact of Different Physical Processes and Their Parameterizations on forecast of a Heavy Rainfall in South China in Pre-Flooding Season[J].Journal of Tropical Meteorology, 2015, 21(2): 194-210. [16] 廖镜彪, 王雪梅, 夏北成, 等.WRF模式中微物理和积云参数化方案的对比试验[J].热带气象学报, 2012, 28(4): 461-470. [17] 辅天华, 陈海山, 曾智华, 等.积云对流参数化对东亚近海热带气旋活动模拟的影响[J].热带气象学报, 2020, 36(2): 254-262. [18] 董海萍, 罗雨, 张秀丽, 等.区域集合预报对华南一次暴雨试验研究[J].热带气象学报, 2014, 30(4): 663-674. [19] ZHANG, X B.multi-scale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX[J].Mon Wea Rev, 2019, 147(1): 291-310. [20] 李俊, 杜钧, 刘羽.北京"7.21"特大暴雨不同集合预报方案的对比试验[J].气象学报, 2015, 73(1): 50-71. [21] 刘亚楠, 王东海, 李国平, 等.南海夏季风爆发前后华南前汛期降水日变化对比分析[J].热带气象学报, 2019, 35(3): 365-378. [22] 胡潇文, 王东海.卫星微波观测资料在混合同化中的应用[J].气象与环境科学, 2016, 39(3): 130-138. [23] ZHANG X B.Application of a Convection-Permitting Ensemble Prediction System to Quantitative Precipitation Forecasts over Southern China: Preliminary Results during SCMREX[J].Quart J Roy Meteor Soc, 2018, 144: 2842-2862. [24] 唐圣钧, 王东海, 杜钧, 等.混合集合预报法在华南暴雨短期预报中的试验[J].应用气象学报, 2015, 26(6): 669-679. [25] 陈静, 薛纪善, 颜宏.华南中尺度暴雨数值预报的不确定性与集合预报试验[J].气象学报, 2003, 61(4): 432-446. [26] HUANG L, LUO Y L.Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season[J].Journal of Geophysical Research.Atmospheres, 2017, 122(16)8494-8516. [27] WEI M, TOTHZ, WOBUS R, et al.Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system[J].Tellus A 2008, 60(1): 2147483647-0. [28] TOTH Z, KALNAY E.Ensemble forecasting at NMC: The generationof perturbations[J].Bull Amer Meteor Soc, 1993, 74(12): 2317- 2330. [29] WANG X, BISHOP C H.A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes[J].J Atmos Sci, 2003, 60(9): 1140-1158. [30] EHRENDORFER M, ERRICO R M, RAEDER K D.Singular-Vector perturbation growth in a primitive equation model with moist physics[J].J Atmos Sci, 1999, 56(11): 1627-1648. [31] PALMER T N, GELARO R, BARKMEIJER J, et al.Singular vectors, metrics, and adaptive observations[J].J Atmos Sci, 1998, 55(4): 633-653. [32] 杜钧, 陈静.单一值预报向概率预报转变的基础:谈谈集合预报及其带来的变革[J].气象, 2010, 36(11): 1-11. [33] ECKEL F A, MASS C F.Aspects of effective mesoscale, short-range ensemble forecasting [J].Wea.Forecasting, 2005, 20(3): 328-350, doi:10.1175/WAF843.1. [34] JOHN, A, SWETS.The Relative Operating Characteristic in Psychology[J].Science, 1973. [35] TALAGRAND O, VAUTARD R.Evaluation of Probabilistic Prediction System[R].Workshop on Predictability ECMWF.1997, 10: 20-22. [36] BAKER L, RUDD A, MIGLIORINI S, et al.Representation of model error in a convective-scale ensemble prediction system[J].Nonlinear Processes Geophys.2014, 21, 19-39. [37] STENSRUD D J, BAO J W, WARNER T T.Using Initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems[J].Mon Wea Rev, 2000, 128(7): 2077-2107.