ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

春季中国日最高气温延伸期预报误差分析及订正

熊敏诠 代刊 唐健

熊敏诠, 代刊, 唐健. 春季中国日最高气温延伸期预报误差分析及订正[J]. 热带气象学报, 2020, 36(6): 795-804. doi: 10.16032/j.issn.1004-4965.2020.071
引用本文: 熊敏诠, 代刊, 唐健. 春季中国日最高气温延伸期预报误差分析及订正[J]. 热带气象学报, 2020, 36(6): 795-804. doi: 10.16032/j.issn.1004-4965.2020.071
Min-quan XIONG, Kan DAI, Jian TANG. ANALYZING AND CALIBRATING EXTENDED-RANGE FORECAST OF CHINA'S DAILY MAXIMUM TEMPERATURE IN SPRING[J]. Journal of Tropical Meteorology, 2020, 36(6): 795-804. doi: 10.16032/j.issn.1004-4965.2020.071
Citation: Min-quan XIONG, Kan DAI, Jian TANG. ANALYZING AND CALIBRATING EXTENDED-RANGE FORECAST OF CHINA'S DAILY MAXIMUM TEMPERATURE IN SPRING[J]. Journal of Tropical Meteorology, 2020, 36(6): 795-804. doi: 10.16032/j.issn.1004-4965.2020.071

春季中国日最高气温延伸期预报误差分析及订正

doi: 10.16032/j.issn.1004-4965.2020.071
基金项目: 

国家气象中心预报员专项 Y201928

详细信息
    通讯作者:

    熊敏诠,男,江西省人,博士,主要从事月内尺度气象要素预测。E-mail: minquanxiong@sina.com

  • 中图分类号: P457.3

ANALYZING AND CALIBRATING EXTENDED-RANGE FORECAST OF CHINA'S DAILY MAXIMUM TEMPERATURE IN SPRING

  • 摘要: 数值模式直接输出和经模式后处理得到的预报误差比较,是延伸期逐日要素预报应用基础。针对中国2 583个站点在2020年春季11~30天的日最高温度预报,根据欧洲数值中心的集合预报输出,首先,使用BP-SM(Back-Propagation - Self memory)法和回归法,进行确定性预报订正效果比较;结果表明BP-SM法和回归法都明显降低了预报绝对误差;在11~14天预报中,BP-SM法得到的平均绝对误差为3.3~3.6 ℃,预报准确率超过35%,订正效果更优。其次,基于模式直接输出和BP-SM法获得的概率预报,使用CRPSS (continuous ranked probability skill score)进行了可预报性分析。结果表明,在地形复杂地区,经过订正,预报准确率明显改善。对于延伸期逐日要素预报,合理的模式后处理方法是降低预报误差和提高预报能力的重要环节。

     

  • 图  1  中国区域站点分布

    图  2  BP-SM方法的示意图

    图  3  集合平均、BP-SM法、回归法在2020年春季延伸期日最高温度预报绝对误差(a)和预报准确率(b)

    图  4  2020年春季日最高气温确定预报绝对误差(a~f)和准确率(g~l)空间分布图

    a、c、e、g、i、k. DMO;b、d、f、h、j、l.BP-SM法。a、b、g、h.第11天;c、d、i、j.第20天;e、f、k、l.第30天。

    图  5  2020年春季的日最高温度概率预报CRPSS空间分布图

    a、c、e. DMO;b、d、f. BP-SM法。a、b.第11天;c、d.第20天;e、f.第30天。

    图  6  2020年春季分区域的日最高温度11~30 d概率预报CRPSS趋势图

    a. DMO;b.BP-SM法;c.55区;d.51区。

    表  1  ECMWF集合预报产品概况

    产品名称 预报要素 成员数 预报时效 时间间隔 空间分辨率 发布频次 起报时间
    中长期预报 定时温度 51 1~15天 12小时 0.5º×0.5º 逐日 20时
    月预报 6小时最高温度 51 16~46天 6小时 0.5º×0.5º 一周两次(星期一、星期三) 08时
    下载: 导出CSV
  • [1] LORENZ E N. Deterministic non-periodic flow[J]. J Atmos Sci, 1963, 20: 130-141.
    [2] LORENZ E N. The predictability of a flow which possesses many scales of Motion[J]. Tellus, 1969, 21: 289-307.
    [3] VITART F, ROBERTSON A W, ANDERSON D L T. Subseasonal to seasonal prediction project: bridging the gap between weather and climate[J]. WMO Bull, 2012, 61(2): 23-28.
    [4] GLAHN H R, LOWRY D A. The use of model output statistics (MOS) in objective weather forecasting[J]. J Appl Meteorol, 1972, 11 (8): 1 203-1 211.
    [5] GLAHN B, PEROUTKA M, WIEDENFELD J, et al. MOS uncertainty estimates in an ensemble framework[J]. Mon Wea Rev, 2009, 137 (1): 246-268.
    [6] GNEITING T, RAFTERY A E, WESTVELD Ⅲ A H, et al. Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation[J]. Mon Wea Rev, 2005, 133 (5): 1 098-1 118.
    [7] CLARK M, GANGOPADHYAY S, HAY L, et al. The schaake shuffle: a method for reconstructing space-time variability in forecasted precipitation and temperature fields[J]. J Hydrometeorol, 2004, 5 (1): 243-262.
    [8] SCHEFZIK R. Ensemble calibration with preserved correlations: unifying and comparing ensemble copula coupling and member-bymember postprocessing[J]. Quart J Roy Meteor Soc, 2017, 143 (703): 999-1008.
    [9] VRAC M, FRIEDERICHS P. Multivariate—intervariable, spatial, and temporal—bias correction[J]. J Climate, 2015, 28 (1): 218-237.
    [10] SCHEUERER M, HAMILL T M, WHITIN B, et al. A method for preferential selection of dates in the Schaake shuffle approach to constructing spatiotemporal forecast fields of temperature and precipitation[J]. Water Resour Res, 2017, 53 (4): 3 029-3 046.
    [11] MASTERS T. Practical neural network recipes in C++[M]. Academic Press, 1993: 493.
    [12] BISHOP C M. Neural Networks for Pattern Recognition[M]. Clarendon Press, Oxford. 1996: 482.
    [13] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[M]. Parallel Distributed Processing, Vol. 1, Rumelhart and McClelland, Eds. Cambridge, MA:M.I.T.Press, 1986.
    [14] SCHALKOFF R. Pattern Recognition: Statistical, Structural and Neural Approaches[M]. New York: wiley, 1992.
    [15] GARDNER M W, DORLING S R. Arti cial neural networks(the multilayer perceptron) --A review of applications in the atmospheric sciences[J]. Atmos Environ, 1998, 32 (14-15): 2 627-2 636.
    [16] MCGOVERN A, ELMORE K L, GAGNE D J, et al. Using artificial intelligence to improve real-time decisionmaking for high-impact weather[J]. Bull Amer Meteor Soc, 2017, 98:2 073-2 090.
    [17] RASP S, LERCH S. Neural networks for postprocessing ensemble weather forecasts[J]. Mon Wea Rev, 2018, 146: 3 885-3 900.
    [18] PATIL K, DEO M C, RAVICHANDRAN M. Prediction of sea surface temperature by combining numerical and neural techniques[J]. J Atmos Ocean Technol, 2016, 33: 1 715-1 726.
    [19] BANKERT R. Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network[J]. J Applied Meteorology, 1994, 33(8): 909-918.
    [20] MARZBAN C, STUMPF G. A neural network for tornado prediction based on Doppler radar-derived attributes[J]. J Applied Meteor, 1994, 35(5): 617-626.
    [21] MARZBAN C, STUMPF G. A neural network for damaging wind prediction[J]. Wea Forecasting, 1998, 13 (1):151-163.
    [22] SAUTER T, VENEMA V. Natural three-dimensional predictor domains for statistical precipitation down-scaling[J]. J Climate, 2011, 24 (23): 6 132-6 145.
    [23] LAKSHMANAN C K, KRAUSE J, TANG L. Quality control of weather radar data using polarimetric variables[J]. J Atmos Oceanic Technology, 2014, 31 (6): 1 234-1 249.
    [24] TAO, Y, GAO X, HSU K, et al. A deep neural network modeling framework to reduce bias in satellite precipitation products[J]. J Hydrometerorology, 2016, 17(3): 931-945.
    [25] LAKSHMANAN V, RABIN R, DEBRUNNER V. Identifying and tracking storms in satellite images[C]//Second Artificial Intelligence Conference, Long Beach, CA, American Meteorological Society, 2000, 90-95.
    [26] LAKSHMANAN A F, SMITH T, HONDL K, et al. An automated technique to quality control radar reflectivity data[J]. Journal of Applied Meteorology, 2007, 46 (3): 288-305.
    [27] NEWMAN J, LAKSHMANAN V, HEINSELMAN P L, et al. Range-correcting azimuthal shear in doppler radar data[J]. Wea Forecasting, 2013, 28: 194-211.
    [28] PALMER T N. The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years[J]. Quart J Roy Meteor Soc, 2019, 145(51): 12-24.
    [29] 代刊, 朱跃建, 毕宝贵.集合模式定量降水预报的统计后处理技术研究综述[J].气象学报, 2018, 76(4):493-510.
    [30] 智协飞, 赵忱.基于集合成员订正的强降水多模式集成预报[J].应用气象学报, 2020, 31(3): 303-314.
    [31] 智协飞, 彭婷, 王玉虹.基于BMA方法的地面气温的10~15 d延伸期概率预报研究[J].大气科学学报, 2018, 41(5) : 627-636.
    [32] 程文聪, 史小康, 张文军, 等.基于深度学习的数值模式降水产品降尺度方法[J].热带气象学报, 2020, 36(3):307-316.
    [33] 熊敏诠.基于集合预报系统的日最高和最低气温预报[J].气象学报, 2017, 75(2): 211-222.
    [34] XIONG M, DAI K. The Optimization algorithm based on neural networks in post-processing ensemble forecasts[C]//in: WANG Y, FU M, XU L, ZOU J (eds) Signal and Information Processing, Networking and Computers. Lecture Notes in Electrical Engineering, 2020, vol 628. Springer, Singapore. 772-780.
    [35] BRADLEY A A, SCHWARTZ S S. Summary verification measures and their interpretation for ensemble forecasts[J]. Mon Wea Rev, 2011, 139: 3 075-3 089.
    [36] ZHU Y, ZHOU X, PEÑA M, et al. Impact of Sea Surface Temperature forcing on weeks 3 and 4 forecast skill in the ncep global ensemble forecasting system[J]. Wea Forecasting, 2017, 32: 2 159-2 174.
    [37] GUAN H, ZHU Y, SINSKY E, et al. Systematic Error Analysis and Calibration of 2-m Temperature for the NCEP GEFS Reforecast of the Subseasonal Experiment (SubX) Project[J]. Wea Forecasting, 2019, 34: 361-376.
    [38] HAGEDORN R, HAMILL T M, WHITAKER J S. Probabilistic forecast calibration using ecmwf and gfs ensemble reforecasts. Part Ⅰ: TwoMeter Temperatures[J]. Mon Wea Rev, 2008, 136: 2 608-2 619.
    [39] GASCON E, LAVERS D, HAMILL T M, et al. Statistical postprocessing of dual-resolution ensemble precipitation forecasts across Europe [J]. Quart J Roy Meteor Soc, 2019, 145 (724): 3 218-3 235.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  21
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 修回日期:  2020-09-16
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回