MICROPHYSICAL STRUCTURE SIMULATION OF TYPHOON CHOI-WAN (0914) BASED ON CLOUDSAT SATELLITE
-
摘要: 使用NCEP (National Centerfor Environmental Prediction) FNL (Final Operational Global Analysis)资料作为初始场和边界条件,用WRF(Weather Research and Forecasting model)模式对西太平洋超强台风“彩云”(0914)进行数值模拟,结合CloudSat卫星数据产品评估Lin、WSM6、Thompson和WDM6四种云微物理参数化方案对热带气旋模拟的适用性。结果表明:不同参数化方案模拟的环流形式区别不大,但对于热带气旋中心的最低气压模拟有差别。WSM6与WDM6模拟的热带气旋云量最多,Lin方案最少。但不同参数化方案模拟的热带气旋云系位置比较一致。不管从模拟的云冰剖面图还是剖面平均的云冰含量看,Thompson方案对云冰的模拟效果都是最优。雷达反射率强回波区域与云冰含量的高值区相对应,但高值区的强度、中心高度均大于CloudSat观测。水成物分布特征表明,Lin方案模拟的冰晶粒子与雪粒子较其他方案分布高度更高且含量偏小,雪粒子大部分由冰晶粒子碰并过程形成; Thompson方案中冰晶粒子快速向雪粒子转换导致冰晶含量非常小; WSM6方案与WDM6方案模拟的水成物分布接近,但WSM6的垂直速度明显大于WDM6方案,由雪粒子、霰粒子融化形成的雨水含量更高。Abstract: The western Pacific super-strong typhoon Choi-Wan(0914) is simulated using the Weather Research and Forecasting (WRF) model based on the National Center for Environmental Prediction (NCEP) Final Operational Global Analysis (FNL) data. The applicability of the four parameterization schemes of Lin, WSM 6, Thompson and WDM 6 to the simulation of tropical cyclone is also evaluated in combination with the CloudSat satellite product. The results show that different parameterized schemes have little difference in the simulation of circulations, but there are differences in the simulation of the lowest pressure in the center of the tropical cyclone. The cloudiness of tropical cyclone simulated by WSM 6 and WDM 6 is the highest, and that of Lin scheme is the lowest, but the location of tropical cyclone simulated by different parameterization schemes is similar. As for simulated cloud ice profile and the average ice water content of the profile, Thompson scheme is the best for ice water content simulation. The strong echo area of radar reflectivity corresponds to the high value area of ice water content, but the intensity and central height of high value area are higher than the observational data from CloudSat. The height of cloud ice and snow particles simulated by Lin scheme is higher than that of other schemes, and the content of snow particles is smaller. Most of the snow particles are formed by the collision process of cloud ice particles. The cloud ice content is very small in Thompson scheme simulation due to the rapid conversion of cloud ice particles to snow particles. The distribution of water products simulated by WSM 6 is similar to that of WDM 6, but vertical velocity simulated by WSM 6 is higher than that of WDM 6, and it is the same with the content of rainwater formed by melting snow particles and graupel particles.
-
Key words:
- CloudSat /
- WRF /
- cloud microphysical process /
- typhoon Cho-Wan /
- cloud ice /
- radar reflectivity
-
表 1 QuickBeam参数设置
参数 type phase cP apm bpm rho P1 P2 P3 1 1 0 0 524 3.0 -1 0.1×106 -1 2 2 1 0 0 524 3.0 -1 -1 1 000 2 3 1 1 0 52 2.6 -1 -1 1 000 2 4 1 1 0 209 2.6 -1 -1 1 000 2 5 1 1 0 261 2.7 -1 -1 1 000 2 表 2 云微物理参数化方案特征
参数化方案名称 主要特征 Lin 单参数方案,计算水汽、云水、雨、冰晶、雪和霰,属于比较复杂的云微物理参数化方案,适用于高分辨率的实际数据数值模拟 WSM6 单参数方案,在WSM5的基础上增加了霰粒子及相关物理过程,其中与霰相关的一些物理过程与Lin方案一致 Thompson 双参数方案,微观物理过程的参数化计算了雪和霰的总和,计算的流动区域中的冰晶的数量偏低 WDM6 双参数方案,与WSM6方案具有相同的冰相部分,仅在水成物的谱型、暖云物理过程参数化部分有所差别 -
[1] 林文实, 孟金平, 蒙伟光, 等.华北暴雪的云微物理参数化方案的比较模拟[J].气象科学, 2009, 29(2):150-156. [2] 邓琳, 端义宏, 高文华, 等.超强台风"威马逊"(2014)云微物理特征的模拟与对比分析[J].气象学报, 2016, 74(5): 697-714. [3] 刘瑞, 翟国庆, 朱佩君, 等. 2013年"菲特"台风暴雨数值模拟中微物理方案的对比试验[J].浙江大学学报, 2016, 43(5):593-601. [4] RAJEEVAN M, KESARKAR A, THAMPI S B, et al. Sensitivity of WRF cloud microphysics to simlations of a severe thunder storm event over Southeast India[J]. Ann Geophy, 2010, 28(2): 603-629. [5] 孙晶, 王鹏云.用MM5模式Reisner霰方案对华南暴雨的数值模拟[J].气象, 2003, 29(4): 10-14. [6] 尹金方, 王东海, 翟国庆.区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J].地球科学进展, 2014, 29(2): 238-249. [7] 花丛, 刘奇俊.云微物理过程影响登陆台风结构及降水的数值试验[J].热带气象学报, 2013, 29(6): 924-934. [8] 辅天华, 陈海山, 曾智华, 等.积云对流参数化对东亚近海热带气旋活动模拟的影响[J].热带气象学报, 2020, 36(2):254-262. [9] 周毓荃, 赵姝慧. CloudSat卫星及其在天气和云观测分析中的应用[J].南京气象学院学报, 2008, 31(5): 603-614. [10] HAYNES J M, LUO Z, STEPHENS G L, et al. A multipurpose radar simulation package: QuickBeam[J]. Bull Amer Meteor Soc, 2007, 88 (11):1 723-1 727. [11] HU X M, NIELSENGAMMON J W, ZHANG F. Evaluation of three planetary boundary layer schemes in the WRF model[J]. J Appl Meteor Climatol, 2010, 49(9): 1 831-1 844. [12] KAIN S, JOHN S. The Kain-Fritsch convective parameterization: An update[J]. J Appl Meteor, 2004, 43(1): 170-181. [13] DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional mode[J]. J Atmos Sci, 1989, 46(20): 3 077-3 107. [14] KAIN J S, FRITSCH J M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme[J]. Meteorological Monographs, 1993, 24(46):165-170. [15] LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model[J]. J Climate Appl Meteor, 1983, 22(6): 1 065-1 092. [16] TAO W K, SIMPSON J, MCCUMBER M. An ice-water saturation adjustment[J]. Mon Wea Rev, 1989, 117(1): 231-235. [17] HONG S Y, LIM J O J. The WRF single-moment 6-Class Microphysics Scheme (WSM6)[J]. Journalofthe Korean Meteorological Society, 2006, 42(2): 129-151. [18] THOMPSON G, FIELD P R, RASMUSSEN R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part Ⅱ: Implementation of a new snow parameterization[J]. Mon Wea Rev, 2008, 136(12): 5 095-5 115. [19] LIM K S S, HONG S Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models[J]. Mon Wea Rev, 2010, 138(6):1 587-1 612. [20] HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev, 2004, 132(1): 103-120. [21] 姜嘉俊, 雷小途.热带气旋的体积及与强度关系的研究[J].热带气象学报, 2019, 35(2): 187-196. [22] 丁霞, 黄兴友, 王海涛.太赫兹频段雷达探测的冰云微物理参数反演算法模拟研究[J].热带气象学报, 2019, 35(1): 63-72. [23] DURDEN S L, TANELLI S, DOBROWALSKI G. CloudSat and a-train observations of tropical cyclones[J]. Open Atmospheric Science Journal, 2009, 3(1): 80-92. [24] 史兰红, 崔林丽, 赵兵科, 等.台风眼壁及周围螺旋云带云属性垂直分布研究[J].热带气象学报, 2015, 31(1): 51-62. [25] 张蕾, 史兰红, 徐健, 等.热带气旋"桑美(2006)"冰云微物理属性垂直分布规律[J].热带海洋学报, 2016, 35(3): 30-40. [26] MATROSOV S Y. CloudSat measurements of landfalling hurricanes Gustav and Ike (2008)[J]. J Geophys Res, 2011, 116(D1): 575-582.