ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有无El Niño影响下热带北大西洋春季增暖的差异及可能成因

叶洋波 余锦华

叶洋波, 余锦华. 有无El Niño影响下热带北大西洋春季增暖的差异及可能成因[J]. 热带气象学报, 2021, 37(1): 126-135. doi: 10.16032/j.issn.1004-4965.2021.012
引用本文: 叶洋波, 余锦华. 有无El Niño影响下热带北大西洋春季增暖的差异及可能成因[J]. 热带气象学报, 2021, 37(1): 126-135. doi: 10.16032/j.issn.1004-4965.2021.012
YE Yang-bo, YU Jin-hua. INFLUENCE OF EL NIÑO ON SPRING WARMING IN THE NORTHERN TROPICAL ATLANTIC AND POSSIBLE CAUSES OF THE INFLUENCE[J]. Journal of Tropical Meteorology, 2021, 37(1): 126-135. doi: 10.16032/j.issn.1004-4965.2021.012
Citation: YE Yang-bo, YU Jin-hua. INFLUENCE OF EL NIÑO ON SPRING WARMING IN THE NORTHERN TROPICAL ATLANTIC AND POSSIBLE CAUSES OF THE INFLUENCE[J]. Journal of Tropical Meteorology, 2021, 37(1): 126-135. doi: 10.16032/j.issn.1004-4965.2021.012

有无El Niño影响下热带北大西洋春季增暖的差异及可能成因

doi: 10.16032/j.issn.1004-4965.2021.012
基金项目: 国家自然科学基金(41575083、41730961)资助
详细信息
    通讯作者:

    余锦华,女,安徽省人,教授,博士研究生导师,主要从事热带气旋、极端天气气候等方面的研究。E-mail: jhyu@nuist.edu.cn

  • 中图分类号: P732

INFLUENCE OF EL NIÑO ON SPRING WARMING IN THE NORTHERN TROPICAL ATLANTIC AND POSSIBLE CAUSES OF THE INFLUENCE

  • 摘要: 热带北大西洋(Northern Tropical Atlantic,NTA)海温异常(sea surface temperature anomaly,SSTA)对美洲乃至全球的气候变率有着重要影响。利用再分析资料对NTA的暖SSTA进行诊断,分析有、无El Niño影响下春季增暖的差异以及可能的成因。结果表明,与El Niño有关的情形中关键区(5~25 °N,10~60 °W)平均春季SSTA为0.55 ℃,无El Niño情形是0.37 ℃;前者与冬季的显著正偏差出现在NTA,后者主要发生在NTA的东侧,且正偏差的数值较小。El Niño激发的热带外Rossby波活动通过加强北大西洋涛动(North Atlantic Oscillation,NAO)负位相,引起El Niño峰值后NTA海域显著的西风异常,暖Kelvin波加热NTA对流层大气,增强其容纳水汽的能力,减小海-气界面的垂直湿度梯度,两者共同作用使海表蒸发减弱,在NTA春季呈现显著暖SSTA。与El Niño无关的情形中,NTA SSTA的变化主要受热带海-气反馈过程的调制,其与热带外NAO的季节内振荡有关,NAO的季节平均负位相较弱,异常西风值较小,同时海-气垂直湿度梯度异常增大,使春季NTA的增暖较弱。

     

  • 图  1  北大西洋春季SST标准差分布图

    方框表示关键区(10~60 °W,5~25 °N)。

    图  2  情形1下(a,c)、情形2下(b,d)NTA春季合成SSTA及SSTAMAM (1)- SSTADJF (0-1)分布(填色,单位:℃)

    点区表明通过0.05显著性检验,蓝色方框表示关键区(10~60 °W, 5~25 °N)。

    图  3  情形1下、情形2下合成混合层海温异常变率(实线,单位:10-2 ℃/月)与动力项和热力项之和(虚线)导致的变率(a,d);短波辐射(虚线)、长波辐射(点线)、潜热通量(粗实线)及感热通量项(细实线)导致的变率(b,e);纬向(实线),经向(虚线)与垂直平流(点线)导致的变率(c,f)

    月份(1)表示NTA春季异常增暖年的月份,月份(0)则表示前一年的月份。

    图  4  两种情形下海温变率峰值时各项贡献(单位:℃/月)

    灰色代表情形1在2月的情况,黑色代表情形2在1月的情况。

    图  5  情形1下、情形2下1—3月(1)合成10 m风场异常(箭头,单位:m/s)及海表饱和比湿与大气2 m处实际比湿差值的异常分布(等值线,单位:g/kg) (a,c);2—4月(1)合成潜热通量异常(等值线,单位:W/m2) (b,d)

    通过0.05显著性检验区域填色,风矢量通过0.05显著性检验者标红,b、d中潜热通量异常向上为正,向下为负。

    图  6  两种情形下合成标准化NAO指数与关键区SSTA(单位:℃)演变曲线

    实线表示情形1,虚线表示情形2,黑色为NAO指数,灰色为SSTA。

    图  7  情形1(a)与情形2(b)下1—3月合成海平面气压异常(填色,单位:hPa)和10 m风异常(箭头,单位:m/s)

    点区表示通过0.05显著性检验,风矢量仅给出通过0.05显著性检验者。

    图  8  情形1(a)与情形2(b)下1—3月(1)合成500 hPa位势高度异常(填色,单位:gpm)与温度异常(等值线,单位:℃)

    点区表示通过0.05显著性检验。

    图  9  情形1(a)与情形2(b)下1—3月(1)合成降水异常(填色,单位:mm/day)与500 hPa T-N波活动通量异常(箭头,单位:m2/s2)

    矢量仅给出通过0.05显著性检验者。

    表  1  NTA春季海温暖事件分类结果

    暖事件类型 年份
    El Niño衰减年暖事件(情形1) 1983 1987 1988 1998 2005 2010
    Niño暖事件(情形2) 1980 1981 1996 1997 2013
    下载: 导出CSV

    表  2  关键区SSTA(单位:℃)与标准化NAO指数的滞后与超前相关系数

    时间间隔/月 -3 -2 -1 0 1 2 3
    滞后与超前相关系数 情形1 0.044 0.010 -0.086 -0.302 -0.486 -0.476 -0.415
    情形2 0.160 0.341 0.083 -0.307 -0.509 -0.331 -0.225
    下载: 导出CSV
  • [1] REASON C J, SMART S. Tropical south east Atlantic warm events and associated rainfall anomalies over southern Africa[J]. Frontiers in Environmental Science, 2015, 3: 24.
    [2] SARAVANAN R, CHANG P. Interaction between tropical Atlantic variability and El Niño-Southern Oscillation[J]. J Climate, 2000, 13(14): 2 177-2 194.
    [3] HASTENRATH S. Circulation and teleconnection mechanisms of Northeast Brazil droughts[J]. Progress in Oceanography, 2006, 70(2-4): 407-415.
    [4] TASCHETTO A S, WAINER I. The impact of the subtropical South Atlantic SST on South American precipitation[J]. Annales Geophysicae, 2008, 26(11): 3 457-3 476.
    [5] YU J H, LI T, TAN Z M, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dyn, 2016, 46(3): 865-877.
    [6] 徐集云, 霍利微, 宋超辉, 等. 热带北大西洋海温异常对南海夏季风的影响及其机理[J]. 大气科学学报, 2019, 42(2): 293-302.
    [7] 王惠美. 热带大西洋热力异常对我国南方夏季高温的影响及机制研究[D]. 北京: 中国气象科学研究院, 2018.
    [8] HAM Y, KUG J, PARK J, et al. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events[J]. Nature Geoscience, 2013, 6(2): 112-116.
    [9] CHIANG J C H, VIMONT D J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability[J]. J Climate, 2004, 17(21): 4143-4158.
    [10] 杨韵, 李建平, 谢飞, 等. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
    [11] BJERKNES J. Atlantic air-sea interaction[J]. Adv Geophy, 1964, 10: 1-82.
    [12] WU R G, YANG S, LIU S, et al. Changes in the relationship between northeast China summer temperature and ENSO[J]. J Geophys Res, 2010, 115(D21): D21107.
    [13] CAYAN D R. Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature[J]. J Phys Oceanog, 1992, 22(8): 859-881.
    [14] DELWORTH T L, GREATBATCH R J. North Atlantic interannual variability in a coupled ocean-atmosphere model[J]. J Climate, 1996, 9(10): 2 356-2 375.
    [15] ENFIELD D B, MAYER D A. Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation[J]. J Geophys Res Oceans, 1997, 102(C1): 929-945.
    [16] PENLAND C, MATROSOVA L. Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling[J]. J Climate, 1998, 11(3): 483-496.
    [17] DING R Q, LI J P. Winter persistence barrier of sea surface temperature in the northern tropical Atlantic associated with ENSO[J]. J Climate, 2011, 24(9): 2 285-2 299.
    [18] AMAYA D J, FOLTZ G R. Impacts of canonical and Modoki El Niño on tropical Atlantic SST[J]. J Geophys Res, 2014, 119(2): 777-789.
    [19] YULAEVA E, WALLACE J M. The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit[J]. J Climate, 1994, 7(11): 1 719-1 736.
    [20] CHIANG J C H, SOBEL A H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate[J]. J Climate, 2002, 15(18): 2 616-2 631.
    [21] LAU N, NATH M. The role of the"atmospheric bridge"in linking tropical Pacific ENSO events to extratropical SST anomalies[J]. J Climate, 1996, 9(9): 2 036-2 057.
    [22] ALEXANDER M, BLADÉ I, NEWMAN M, et al. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. J Climate, 2002, 15(16): 2 205-2 231.
    [23] SASAKI W, DOIT, RICHARDSKJ, etal. The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM[J]. Climate Dyn, 2015, 44(1-2): 191-202.
    [24] WALLACE J M, GUTZLER D S. Teleconnections in the geopotential height field during the Northern Hemisphere winter[J]. Mon Wea Rev, 1981, 109(4): 784-812.
    [25] SUTTON R T, JEWSON S P, ROWELL D P. The elements of climate variability in the tropical Atlantic region[J]. J Climate, 2000, 13(18): 3 261-3 284.
    [26] JAVIER G S, CHRISTOPHE C, DOUVILLE H, et al. Revisiting the ENSO Teleconnection to the Tropical North Atlantic[J]. J Climate, 2017, 30(17): 6 945-6 957.
    [27] CHANG P, FANG Y, SARAVANAN R, et al. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño[J]. Nature, 2006, 443(7 109): 324-328.
    [28] LI T, ZHANG Y S, LU E, et al. Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis[J]. Geophys Res Lett, 2002, 29(23): 25-1-25-4.
    [29] NNAMCHI H C, LI J, KUCHARSKI F, et al. Thermodynamic controls of the Atlantic Niño[J]. Nature Communications, 2015, 6(1): 1 567-1 586.
    [30] LARGE W G, DANABASOGLU G, DONEY S C, et al. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology[J]. J Phys Oceanog, 1997, 27(11): 2 418-2 447.
    [31] 邵庆秋, 周明煜, 李兴生. 洋面动量, 感热和潜热通量计算的研究[J]. 大气科学, 1991, 15(3): 9-17.
    [32] BUNKER A F. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean[J]. Mon Wea Rev, 1976, 104(9): 1 122-1 140.
    [33] LI J P, WANG X L. A new North Atlantic Oscillation index and its variability[J]. Adv Atmos Sci, 2003, 20(5): 661-676.
    [34] TAKAYA K, NAKAMURA H. A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J Atmos Sci, 2001, 58(6): 608-627.
    [35] BATES S C. Seasonal influences on coupled ocean-atmosphere variability in the tropical Atlantic Ocean[J]. J Climate, 2010, 23(3): 582-604.
    [36] ZHANG W J, WANG Z Q, STUECKER M F, et al. Impact of ENSO longitudinal position on teleconnections to the NAO[J]. Climate Dyn, 2019, 52(1-2): 257-274.
    [37] 赵晓彤, 余锦华, 廖桉桦, 等. 北大西洋热带气旋生成频数变化对海温异常响应特征的研究[J]. 热带气象学报, 2020, 36(2): 208-218.
    [38] 刘甫, 明杰, 张翰, 等. 热带气旋"凤凰"(2014)的结构演变及其引起的海洋响应分析[J]. 热带气象学报, 2020, 36(4): 552-561.
    [39] HOSKINS B J, KAROLY D J. The steady linear response of a spherical atmosphere to thermal and orographic forcing[J]. J Atmos Sci, 1981, 38(6): 1 179-1 196.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  78
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 修回日期:  2020-11-28
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回