INFLUENCE OF EL NIÑO ON SPRING WARMING IN THE NORTHERN TROPICAL ATLANTIC AND POSSIBLE CAUSES OF THE INFLUENCE
-
摘要: 热带北大西洋(Northern Tropical Atlantic,NTA)海温异常(sea surface temperature anomaly,SSTA)对美洲乃至全球的气候变率有着重要影响。利用再分析资料对NTA的暖SSTA进行诊断,分析有、无El Niño影响下春季增暖的差异以及可能的成因。结果表明,与El Niño有关的情形中关键区(5~25 °N,10~60 °W)平均春季SSTA为0.55 ℃,无El Niño情形是0.37 ℃;前者与冬季的显著正偏差出现在NTA,后者主要发生在NTA的东侧,且正偏差的数值较小。El Niño激发的热带外Rossby波活动通过加强北大西洋涛动(North Atlantic Oscillation,NAO)负位相,引起El Niño峰值后NTA海域显著的西风异常,暖Kelvin波加热NTA对流层大气,增强其容纳水汽的能力,减小海-气界面的垂直湿度梯度,两者共同作用使海表蒸发减弱,在NTA春季呈现显著暖SSTA。与El Niño无关的情形中,NTA SSTA的变化主要受热带海-气反馈过程的调制,其与热带外NAO的季节内振荡有关,NAO的季节平均负位相较弱,异常西风值较小,同时海-气垂直湿度梯度异常增大,使春季NTA的增暖较弱。Abstract: Sea surface temperature anomaly (SSTA) in the Northern Tropical Atlantic (NTA) has important effects on climate variation in the Americas and the world at large. Reanalysis data are used to diagnose warm NTA SSTA, and the difference in spring warming with or without the influence of El Niño and the possible causes of the difference are analyzed. The results show that the average spring SSTA related to El Niño reaches 0.55℃in the key area (5°N~25°N, 10°W~60°W), while the one without the influence of El Niño only reaches 0.37℃; the significant positive deviation between the former and winter occurs in the NTA, while the latter occurs mainly on the east side of the NTA, and the value of the positive deviation is relatively small. The El Niño-induced anomalous activity flux of Rossby wave outside the tropics leads to significant westerly anomalies in the NTA by strengthening the negative NAO phase after the mature phase of El Niño. The warm Kelvin wave heats the troposphere over the NTA, enhancing its ability to hold water vapor and reducing the vertical humidity gradient at the sea-air interface. Under the combined impact of them two, the evaporation in sea surface decreases, leading to warm SSTA in spring in the NTA. When there is no influence of El Niño, the variation of NTA SSTA is mainly modulated by the tropical sea-air feedback process and related to the intra-seasonal oscillation of NAO outside the tropics. The seasonal mean negative phase of NAO is relatively weak, and thus the anomalous westerly wind is small, while the vertical humidity gradient at the sea-air interface increases, leading to weaker NTA warming.
-
Key words:
- NTA /
- spring SSTA /
- El Niño /
- teleconnection /
- NAO
-
表 1 NTA春季海温暖事件分类结果
暖事件类型 年份 El Niño衰减年暖事件(情形1) 1983 1987 1988 1998 2005 2010 Niño暖事件(情形2) 1980 1981 1996 1997 2013 表 2 关键区SSTA(单位:℃)与标准化NAO指数的滞后与超前相关系数
时间间隔/月 -3 -2 -1 0 1 2 3 滞后与超前相关系数 情形1 0.044 0.010 -0.086 -0.302 -0.486 -0.476 -0.415 情形2 0.160 0.341 0.083 -0.307 -0.509 -0.331 -0.225 -
[1] REASON C J, SMART S. Tropical south east Atlantic warm events and associated rainfall anomalies over southern Africa[J]. Frontiers in Environmental Science, 2015, 3: 24. [2] SARAVANAN R, CHANG P. Interaction between tropical Atlantic variability and El Niño-Southern Oscillation[J]. J Climate, 2000, 13(14): 2 177-2 194. [3] HASTENRATH S. Circulation and teleconnection mechanisms of Northeast Brazil droughts[J]. Progress in Oceanography, 2006, 70(2-4): 407-415. [4] TASCHETTO A S, WAINER I. The impact of the subtropical South Atlantic SST on South American precipitation[J]. Annales Geophysicae, 2008, 26(11): 3 457-3 476. [5] YU J H, LI T, TAN Z M, et al. Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J]. Climate Dyn, 2016, 46(3): 865-877. [6] 徐集云, 霍利微, 宋超辉, 等. 热带北大西洋海温异常对南海夏季风的影响及其机理[J]. 大气科学学报, 2019, 42(2): 293-302. [7] 王惠美. 热带大西洋热力异常对我国南方夏季高温的影响及机制研究[D]. 北京: 中国气象科学研究院, 2018. [8] HAM Y, KUG J, PARK J, et al. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events[J]. Nature Geoscience, 2013, 6(2): 112-116. [9] CHIANG J C H, VIMONT D J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability[J]. J Climate, 2004, 17(21): 4143-4158. [10] 杨韵, 李建平, 谢飞, 等. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817. [11] BJERKNES J. Atlantic air-sea interaction[J]. Adv Geophy, 1964, 10: 1-82. [12] WU R G, YANG S, LIU S, et al. Changes in the relationship between northeast China summer temperature and ENSO[J]. J Geophys Res, 2010, 115(D21): D21107. [13] CAYAN D R. Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature[J]. J Phys Oceanog, 1992, 22(8): 859-881. [14] DELWORTH T L, GREATBATCH R J. North Atlantic interannual variability in a coupled ocean-atmosphere model[J]. J Climate, 1996, 9(10): 2 356-2 375. [15] ENFIELD D B, MAYER D A. Tropical Atlantic sea surface temperature variability and its relation to El Niño‐Southern Oscillation[J]. J Geophys Res Oceans, 1997, 102(C1): 929-945. [16] PENLAND C, MATROSOVA L. Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling[J]. J Climate, 1998, 11(3): 483-496. [17] DING R Q, LI J P. Winter persistence barrier of sea surface temperature in the northern tropical Atlantic associated with ENSO[J]. J Climate, 2011, 24(9): 2 285-2 299. [18] AMAYA D J, FOLTZ G R. Impacts of canonical and Modoki El Niño on tropical Atlantic SST[J]. J Geophys Res, 2014, 119(2): 777-789. [19] YULAEVA E, WALLACE J M. The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit[J]. J Climate, 1994, 7(11): 1 719-1 736. [20] CHIANG J C H, SOBEL A H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate[J]. J Climate, 2002, 15(18): 2 616-2 631. [21] LAU N, NATH M. The role of the"atmospheric bridge"in linking tropical Pacific ENSO events to extratropical SST anomalies[J]. J Climate, 1996, 9(9): 2 036-2 057. [22] ALEXANDER M, BLADÉ I, NEWMAN M, et al. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. J Climate, 2002, 15(16): 2 205-2 231. [23] SASAKI W, DOIT, RICHARDSKJ, etal. The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM[J]. Climate Dyn, 2015, 44(1-2): 191-202. [24] WALLACE J M, GUTZLER D S. Teleconnections in the geopotential height field during the Northern Hemisphere winter[J]. Mon Wea Rev, 1981, 109(4): 784-812. [25] SUTTON R T, JEWSON S P, ROWELL D P. The elements of climate variability in the tropical Atlantic region[J]. J Climate, 2000, 13(18): 3 261-3 284. [26] JAVIER G S, CHRISTOPHE C, DOUVILLE H, et al. Revisiting the ENSO Teleconnection to the Tropical North Atlantic[J]. J Climate, 2017, 30(17): 6 945-6 957. [27] CHANG P, FANG Y, SARAVANAN R, et al. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño[J]. Nature, 2006, 443(7 109): 324-328. [28] LI T, ZHANG Y S, LU E, et al. Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis[J]. Geophys Res Lett, 2002, 29(23): 25-1-25-4. [29] NNAMCHI H C, LI J, KUCHARSKI F, et al. Thermodynamic controls of the Atlantic Niño[J]. Nature Communications, 2015, 6(1): 1 567-1 586. [30] LARGE W G, DANABASOGLU G, DONEY S C, et al. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology[J]. J Phys Oceanog, 1997, 27(11): 2 418-2 447. [31] 邵庆秋, 周明煜, 李兴生. 洋面动量, 感热和潜热通量计算的研究[J]. 大气科学, 1991, 15(3): 9-17. [32] BUNKER A F. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean[J]. Mon Wea Rev, 1976, 104(9): 1 122-1 140. [33] LI J P, WANG X L. A new North Atlantic Oscillation index and its variability[J]. Adv Atmos Sci, 2003, 20(5): 661-676. [34] TAKAYA K, NAKAMURA H. A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J Atmos Sci, 2001, 58(6): 608-627. [35] BATES S C. Seasonal influences on coupled ocean-atmosphere variability in the tropical Atlantic Ocean[J]. J Climate, 2010, 23(3): 582-604. [36] ZHANG W J, WANG Z Q, STUECKER M F, et al. Impact of ENSO longitudinal position on teleconnections to the NAO[J]. Climate Dyn, 2019, 52(1-2): 257-274. [37] 赵晓彤, 余锦华, 廖桉桦, 等. 北大西洋热带气旋生成频数变化对海温异常响应特征的研究[J]. 热带气象学报, 2020, 36(2): 208-218. [38] 刘甫, 明杰, 张翰, 等. 热带气旋"凤凰"(2014)的结构演变及其引起的海洋响应分析[J]. 热带气象学报, 2020, 36(4): 552-561. [39] HOSKINS B J, KAROLY D J. The steady linear response of a spherical atmosphere to thermal and orographic forcing[J]. J Atmos Sci, 1981, 38(6): 1 179-1 196.