[1] |
REICHSTEIN M, CAMPS V G, STEVENS B. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566: 195-204.
|
[2] |
HAIDAR A, VERMA B. Monthly rainfall forecasting using one-dimensional deep convolutional neural network[J]. IEEE Access 2018, 6: 69 053-69 063.
|
[3] |
程文聪, 史小康, 张文军, 等. 基于深度学习的数值模式降水产品降尺度方法[J]. 热带气象学报, 2020, 36(3): 307-316.
|
[4] |
周满国, 黄艳国, 杨训根. 基于GRU神经网络与灰色模型集成的气温预报[J]. 热带气象学报, 2020, 36(6): 855-864.
|
[5] |
谢超, 马学款, 张恒德. 华南低能见度天气特征及客观预报研究[J]. 气象科学, 2019, 39(4): 556-561.
|
[6] |
MAQSOOD I, KHAN M, ABRAHAM A. An ensemble of neural networks for weather forecasting[J]. Neural Comput Appl, 2004, 13: 112-122.
|
[7] |
SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7-12 December 2015.
|
[8] |
SCHER S. Toward data-driven weather and climate forecasting: approximating a simple general circulation model with deep learning[J]. Geophys Res Lett, 2018, 45: 12 616-12 622.
|
[9] |
CANDY B, SAUNDERS R W, GHENT D, et al. The impact of satellite-derived land surface temperatures on numerical weather prediction analyses and forecasts[J]. J Geophys Res, 2017, 122: 9 783-9 802.
|
[10] |
PATHAK J, WIKNER A, FUSSELL R. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge- based model[C]. Chaos, 2018, 28: 041101.
|
[11] |
ABRAHART R J, ANCTIL F, COULIBALY P, et al. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog[J]. Phys Geogr Earth Environ, 2012, 36: 480-513.
|
[12] |
吴进, 董国豪, 李乔深. 基于区域卷积神经网络和光流法的目标跟踪[J]. 电讯技术, 2018, 58(1): 6-12.
|
[13] |
CHEN L, YE L, SINGH V, et al. Determination of input for artificial neural networks for flood forecasting using the copula entropy method [J]. J Hydrol Eng, 2013, 19: 04014021.
|
[14] |
KASIVISWANATHAN K S, SUDHEER K P. Comparison of methods used for quantifying prediction interval in artificial neural network hydrologic models[J]. Model Earth Syst Environ, 2016, 2: 22.
|
[15] |
KASIVISWANATHAN K S, SUDHEER K P. Methods used for quantifying the prediction uncertainty of artificial neural network based hydrologic models. Stoch[J]. Environ Res Risk Assess, 2017, 31: 1 659-1 670.
|
[16] |
袁雷, 程岳, 牛文生, 等. 基于深度学习的跑道前视红外图像轮廓线提取[J]. 电讯技术, 2019, 59(2): 179-184.
|
[17] |
吴进, 闵育, 马思敏, 等. 一种基于CNN与LSTM结合的微表情识别算法[J]. 电讯技术, 2020, 60(1): 1-7.
|
[18] |
HSU K L, GUPTA H V, SOROOSHIAN S. Artificial neural network modeling of rainfall-runoff process[J]. Water Resources Res, 1995, 31: 2 517-2 530.
|
[19] |
LIU J, N K, HU Y, HE Y, et al. Deep neural network modeling for big data weather forecasting, information granularity, big data, and computational intelligence[M] Springer International Publishing: Cham, Switzerland, 2015: 389-408.
|
[20] |
FUENTE A, MERUANE V, MERUANE C. Hydrological early warning system based on a deep learning runoff model coupled with a meteorological forecast[J]. Water, 2019, 11(9): 1 808.
|
[21] |
LU J, HU W, ZHANG X K. Precipitation data assimilation system based on a neural network and case-based reasoning system[J]. Information, 2018, 9(5): 106.
|
[22] |
HERNÁNDEZ E, ANGUIX V S, JULIAN V, et al. Rainfall prediction: A deep learning approach[C]. In International Conference on Hybrid Artifcial Intelligence Systems, Springer, 2016: 151-162.
|
[23] |
SHI X J, SHI Z R, WAN H G, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[J]. In Neural Information Processing Systems, 2015: 802-810.
|
[24] |
HA J H, YONG H L, KIM Y H. Forecasting the precipitation of the next day using deep learning[J]. Korean Inst. Intell. Syst, 2016, 26: 93-98.
|
[25] |
KOLANOWSKI K, ŚWIETLICKA A, KAPELA R, et al. Multisensor data fusion using Elman neural networks[J]. Applied Mathematics and Computation, 2018, 319: 236-244.
|
[26] |
HASSOUN M H. Fundamentals of artificial neural networks[M]. MIT Press: Cambridge, MA, USA, 1995.
|
[27] |
GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: A search space odyssey[J]. IEEE Trans. Neural Netw. Learn. Syst, 2016, 28: 2 222-2 232.
|
[28] |
方春, 孙福振, 李彩虹. 基于深度学习和字符嵌入的细胞穿透肽预测[J]. 计算机仿真, 2019, 36(10): 353-358.
|
[29] |
SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Netw. 2015, 61: 85-117.
|
[30] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Comput, 1997, 9: 1 735-1 780.
|
[31] |
刘昕玥, 姚建国, 万定生. 基于组合核函数SVM的中小流域流量预测研究[J]. 计算机仿真, 2019, 36(11): 454-457.
|
[32] |
于广宇, 董学平, 王祥民, 等. 弹性网下基于LSTM的分解炉出口温度预测[J/OL]. 系统仿真学报: 1-8[2020-04-04]. http://kns.cnki.net/kcms/detail/11.3092.V.20200318.1918.005.html.
|