ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的气象要素预测方法

马景奕 刘维成 闫文君

马景奕, 刘维成, 闫文君. 基于深度学习的气象要素预测方法[J]. 热带气象学报, 2021, 37(2): 186-193. doi: 10.16032/j.issn.1004-4965.2021.018
引用本文: 马景奕, 刘维成, 闫文君. 基于深度学习的气象要素预测方法[J]. 热带气象学报, 2021, 37(2): 186-193. doi: 10.16032/j.issn.1004-4965.2021.018
MA Jing-yi, LIU Wei-cheng, YAN Wen-jun. METEOROLOGICAL ELEMENTS FORECASTING METHOD BASED ON DEEP LEARNING[J]. Journal of Tropical Meteorology, 2021, 37(2): 186-193. doi: 10.16032/j.issn.1004-4965.2021.018
Citation: MA Jing-yi, LIU Wei-cheng, YAN Wen-jun. METEOROLOGICAL ELEMENTS FORECASTING METHOD BASED ON DEEP LEARNING[J]. Journal of Tropical Meteorology, 2021, 37(2): 186-193. doi: 10.16032/j.issn.1004-4965.2021.018

基于深度学习的气象要素预测方法

doi: 10.16032/j.issn.1004-4965.2021.018
基金项目: 

国家自然科学基金项目 41505036

详细信息
    通讯作者:

    马景奕,甘肃省人,高级工程师,主要的研究方向:信息技术、人工智能、现代教育技术。Email: elose@126.com

  • 中图分类号: P456

METEOROLOGICAL ELEMENTS FORECASTING METHOD BASED ON DEEP LEARNING

  • 摘要: 针对气象预测内容繁多且影响因素多样的问题,提出了一种基于长短时记忆(LSTM)的气象预测方法。方法能够对繁杂的气象数据进行自动预处理,提取相应的特征信息。通过神经网络的前向训练、长短时记忆反馈学习,经过多隐藏层地自主训练,对能见度、温度、露点、风速、风向以及压力气象信息实现准确预测。通过实验以及与经典机器学习预测方法的比较,验证了本文方法在气象预测中的有效性,进一步提升了气象预测的准确性,各项预测值的均方检验误差平均值为0.35。

     

  • 图  1  多层神经网络结构

    图  2  基于LSTM的深度学习网络

    a.长短期存储器单元结构;b.LSTM单元结构。

    图  3  气象数据地域来源示意图

    图  4  在小数据集上的温度预测

    图  5  训练误差随训练次数的变化情况

    图  6  气象预测值误差随训练次数变化情况

    图  7  温度预测值与真实情况分布

    图  8  露点预测值与真实情况分布

    图  9  不同方法对风速流量的预测分布

    图  10  两种方法预测值均方检验误差分布图

  • [1] REICHSTEIN M, CAMPS V G, STEVENS B. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566: 195-204.
    [2] HAIDAR A, VERMA B. Monthly rainfall forecasting using one-dimensional deep convolutional neural network[J]. IEEE Access 2018, 6: 69 053-69 063.
    [3] 程文聪, 史小康, 张文军, 等. 基于深度学习的数值模式降水产品降尺度方法[J]. 热带气象学报, 2020, 36(3): 307-316.
    [4] 周满国, 黄艳国, 杨训根. 基于GRU神经网络与灰色模型集成的气温预报[J]. 热带气象学报, 2020, 36(6): 855-864.
    [5] 谢超, 马学款, 张恒德. 华南低能见度天气特征及客观预报研究[J]. 气象科学, 2019, 39(4): 556-561.
    [6] MAQSOOD I, KHAN M, ABRAHAM A. An ensemble of neural networks for weather forecasting[J]. Neural Comput Appl, 2004, 13: 112-122.
    [7] SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7-12 December 2015.
    [8] SCHER S. Toward data-driven weather and climate forecasting: approximating a simple general circulation model with deep learning[J]. Geophys Res Lett, 2018, 45: 12 616-12 622.
    [9] CANDY B, SAUNDERS R W, GHENT D, et al. The impact of satellite-derived land surface temperatures on numerical weather prediction analyses and forecasts[J]. J Geophys Res, 2017, 122: 9 783-9 802.
    [10] PATHAK J, WIKNER A, FUSSELL R. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge- based model[C]. Chaos, 2018, 28: 041101.
    [11] ABRAHART R J, ANCTIL F, COULIBALY P, et al. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog[J]. Phys Geogr Earth Environ, 2012, 36: 480-513.
    [12] 吴进, 董国豪, 李乔深. 基于区域卷积神经网络和光流法的目标跟踪[J]. 电讯技术, 2018, 58(1): 6-12.
    [13] CHEN L, YE L, SINGH V, et al. Determination of input for artificial neural networks for flood forecasting using the copula entropy method [J]. J Hydrol Eng, 2013, 19: 04014021.
    [14] KASIVISWANATHAN K S, SUDHEER K P. Comparison of methods used for quantifying prediction interval in artificial neural network hydrologic models[J]. Model Earth Syst Environ, 2016, 2: 22.
    [15] KASIVISWANATHAN K S, SUDHEER K P. Methods used for quantifying the prediction uncertainty of artificial neural network based hydrologic models. Stoch[J]. Environ Res Risk Assess, 2017, 31: 1 659-1 670.
    [16] 袁雷, 程岳, 牛文生, 等. 基于深度学习的跑道前视红外图像轮廓线提取[J]. 电讯技术, 2019, 59(2): 179-184.
    [17] 吴进, 闵育, 马思敏, 等. 一种基于CNN与LSTM结合的微表情识别算法[J]. 电讯技术, 2020, 60(1): 1-7.
    [18] HSU K L, GUPTA H V, SOROOSHIAN S. Artificial neural network modeling of rainfall-runoff process[J]. Water Resources Res, 1995, 31: 2 517-2 530.
    [19] LIU J, N K, HU Y, HE Y, et al. Deep neural network modeling for big data weather forecasting, information granularity, big data, and computational intelligence[M] Springer International Publishing: Cham, Switzerland, 2015: 389-408.
    [20] FUENTE A, MERUANE V, MERUANE C. Hydrological early warning system based on a deep learning runoff model coupled with a meteorological forecast[J]. Water, 2019, 11(9): 1 808.
    [21] LU J, HU W, ZHANG X K. Precipitation data assimilation system based on a neural network and case-based reasoning system[J]. Information, 2018, 9(5): 106.
    [22] HERNÁNDEZ E, ANGUIX V S, JULIAN V, et al. Rainfall prediction: A deep learning approach[C]. In International Conference on Hybrid Artifcial Intelligence Systems, Springer, 2016: 151-162.
    [23] SHI X J, SHI Z R, WAN H G, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[J]. In Neural Information Processing Systems, 2015: 802-810.
    [24] HA J H, YONG H L, KIM Y H. Forecasting the precipitation of the next day using deep learning[J]. Korean Inst. Intell. Syst, 2016, 26: 93-98.
    [25] KOLANOWSKI K, ŚWIETLICKA A, KAPELA R, et al. Multisensor data fusion using Elman neural networks[J]. Applied Mathematics and Computation, 2018, 319: 236-244.
    [26] HASSOUN M H. Fundamentals of artificial neural networks[M]. MIT Press: Cambridge, MA, USA, 1995.
    [27] GREFF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: A search space odyssey[J]. IEEE Trans. Neural Netw. Learn. Syst, 2016, 28: 2 222-2 232.
    [28] 方春, 孙福振, 李彩虹. 基于深度学习和字符嵌入的细胞穿透肽预测[J]. 计算机仿真, 2019, 36(10): 353-358.
    [29] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Netw. 2015, 61: 85-117.
    [30] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Comput, 1997, 9: 1 735-1 780.
    [31] 刘昕玥, 姚建国, 万定生. 基于组合核函数SVM的中小流域流量预测研究[J]. 计算机仿真, 2019, 36(11): 454-457.
    [32] 于广宇, 董学平, 王祥民, 等. 弹性网下基于LSTM的分解炉出口温度预测[J/OL]. 系统仿真学报: 1-8[2020-04-04]. http://kns.cnki.net/kcms/detail/11.3092.V.20200318.1918.005.html.
  • 加载中
图(10)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  45
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-11-18
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回