RESEARCH PROGRESS OF LIGHTNING ACTIVITY IN THUNDERSTORMS
-
摘要: 从一般雷暴、灾害性雷暴和台风的闪电活动特征以及雷暴闪电尺度特征四个方面对相关研究进行梳理。一般雷暴通常具有正常极性电荷结构,云/地闪比例在3左右(中纬度地区),地闪中正地闪占比为10%左右,负地闪位置往往更集中于对流区。灾害性雷暴倾向具有活跃的云闪,低比例的地闪,易出现反极性电荷结构,正地闪比例偏高。闪电活动与灾害性天气现象之间存在关联性,部分雹暴过程具有两次闪电活跃阶段。台风中大部分闪电发生在外雨带,眼壁/外雨带闪电爆发很可能预示气旋强度的增强以及路径的改变。由闪电持续时间、通道空间扩展所表征的闪电尺度与雷暴对流强度相关。弱对流雷暴或雷暴的弱对流区域可能由水平扩展、垂直分层的电荷分布形态主导,闪电频次低,闪电空间尺度大;强对流雷暴或雷暴的强对流区域可能由交错分布的小电荷区主导,闪电频次高,闪电尺度小。Abstract: In this paper, we summarized relevant studies from four aspects, i.e., lightning activity in typical thunderstorms, severe thunderstorms, and typhoons and lightning flash size. The typical thunderstorms usually have a normal charge structure. The ratio of intracloud(IC) lightning to cloud-to-ground(CG)lightning is approximately 3 in middle latitudes, and positive CG(PCG) lightning approximately accounts for 10% of the total CG lightning. Negative CG lightning tends to occur in convective regions. Severe thunderstorms tend to have high-frequency IC flashes and low proportion of CG flashes and feature a relatively greater proportion of PCG flashes associated with the inverted charge structure. There is a correlation between lightning activity and severe weather events. Some hailstorms contain two activelightning stages. In typhoon, lightning tends to predominantly occur in the outer rainbands. The outbreak of lightning within the eyewall and inner core is likely to indicate an increase in typhoon intensity or a change in path. There is a correlation between the intensity of thunderstorm convection and the lightning flash size represented by flash duration and channel expansion. Weak convective thunderstorms or weak convective areas of thunderstorms may be dominated by horizontally extending and vertically layered charge distribution patterns and feature low-frequency and large lightning flashes. Strong convective thunderstorms or strong convective areas of thunderstorms may be dominated by interlaced small charge regions and feature high-frequency and small lightning flashes.
-
Key words:
- lightning /
- thunderstorm /
- severe weather /
- typhoon
-
图 5 2004年10月5日美国新墨西哥州一次超级单体过程三个连续体扫对应的闪电活动和雷暴结构
a1、b1和c1的彩色底图表示平均闪电凸壳面积(表征闪电通道的水平扩展大小),黑色曲线对应底层雷达反射率廓线(由外到内分别对应10 dBZ、30 dBZ、50 dBZ和60 dBZ),绿色曲线表示闪电起始密度(由外到内的值为0.5 fl/km2、3 fl/km2和5 fl/km2),红色曲线对应闪电扩展密度(根据闪电通道是否穿越进行统计,由外到内的值为1.5 fl/km2、3 fl/km2、10 fl/km2和20 fl/km2),黑色直线显示了右侧雷达垂直剖面图的水平位置。a2、b2和c2展示了雷达垂直剖面与闪电初始位置的叠加。注意闪电凸壳面积的小值中心与闪电起始和闪电扩展面积的大值中心在水平空间上相对应,闪电起始高密度区位于强反射率柱上部。引自Zhang等[51]图7。
-
[1] MACKERRAS D M, DARVENIA R E, ORVILE E R, et al. Global lightning: Total, cloud and ground flash estimates[J]. J Geophys Res, 1998, 103(D16): 19 791-19 809. [2] YANG X, SUN J, LI W. An analysis of cloud-to-ground lightning in China during 2010-13[J]. Wea Forecasting, 2015, 30(6): 1 537-1 550. [3] ZHENG D, ZHANG Y, MENG Q, et al. Lightning activity and electrical structure in a thunderstorm that continued for more than 24h[J]. Atmos Res, 2010, 97(1-2): 241-256. [4] RUTLEDGE S A, PETERSEN W A. Vertical radar reflectivity structure and cloud-to-ground lightning in the stratiform region of MCSs: Further evidence for in-situ charging in the stratiform region[J]. Mon Wea Rev, 1994, 122(8): 1 760-1 776. [5] LIU D, QIE X, XIONG Y, et al. Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing[J]. Adv Atmos Sci, 2011, 28(4): 866-878. [6] WANG C, ZHENG D, ZHANG Y, et al. Relationship between lightning activity and vertical airflow characteristics in thunderstorms[J]. Atmos Res, 2017, 191: 12-19. [7] 张义军, 孟青, KREHBIEL P R. 正地闪发展的时空结构特征与闪电双向先导[J]. 中国科学D辑: 地球科学, 2006, 36(1): 98-108. [8] SHACKFORD C R. Radar indications of a precipitation-lightning relationship in New England thunderstorms[J]. J Atmos Sci, 1960, 17(1): 15-19. [9] ZHENG D, MACGORMAN D R. Characteristics of flash initiations in a supercell cluster with tornadoes[J]. Atmos Res, 2016, 167: 249-264. [10] 徐爽. 京津地区雹暴过程的闪电活动特征研究[D]. 南京: 南京信息工程大学, 2016. [11] 冯桂力, 郄秀书, 袁铁, 等. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学D辑: 地球科学, 2007, 37(1): 123-132. [12] ZHANG Y, MENG Q, KREHBIEL P R, et al. Spatial and temporal characteristics of VHF radiation source produced lightning in supercell thunderstorms[J]. Chin Sci Bull, 2004, 49(6): 624-631. [13] 王晨曦, 郑栋, 张义军, 等. 一次雹暴过程的闪电活动特征及其与雹暴结构的关系[J]. 热带气象学报, 2014, 30(6): 1 127-1 136. [14] 郑栋, 张义军, 孟青, 等. 一次雹暴的闪电特征和电荷结构演变研究[J]. 气象学报, 2010, 68(2): 248-263. [15] XU S, ZHENG D, WANG Y, et al. Characteristics of the two active stages of lightning activity in two hailstorms[J]. J Meteor Res, 2016, 30(2): 265-281. [16] MACGORMAN D R, BURGESS D W. Positive cloud-to-ground lightning in tornadic storms and hailstorms[J]. Mon Wea Rev, 1994, 122(8): 1 671-1 697. [17] YAO W, ZHANG Y, MENG Q, et al. A comparison of the characteristics of total and cloud-to-ground lightning activities in hailstorms[J]. Acta Meteor Sinica, 2013, 27(2): 282-293. [18] WILLIAMS E, BOLDI B, MATLIN A, et al. The behavior of total lightning activity in severe Florida thunderstorms[J]. Atmos Res, 1999, 51(3): 245-265. [19] 田野, 姚雯, 尹佳莉, 等. 不同闪电跃增算法在北京地区应用效果对比[J]. 应用气象学报, 2021, 32(2): 217-232. [20] GOODMAN S J, BLAKESLEE R, CHRISTIAN H, et al. The North Alabama Lightning Mapping Array: recent severe storm observations and future prospects[J]. Atmos Res, 2005, 76(1-4): 423-437. [21] GATIN P N. Severe weather precursors in the lightning activity of Tennessee valley thunderstorms[D]. Master Thesis, The University of Alabama in Huntsville, USA, 2007. [22] GATIN P N, GOODMAN S J. A total lightning trending algorithm to identify severe thunderstorms[J]. J Atmos Oceanic Technol, 2010, 27(27): 3-22. [23] MACGORMAN D R, BURGESS D W, MAZUR V, et al. Lightning rates relative to tornadic storm evolution on 22 May 1981[J]. J Atmos Sci, 1989, 46(2): 221-250. [24] TAKAHASHI T. Riming electrification as a charge generation mechanism in thunderstorms[J]. J Atmos Sci, 1978, 35(8): 1536-1548. [25] MACGORMAN D R, RUST W D, KREHBIEL P R, et al. The electrical structure of two supercell storms during STEPS[J]. Mon Wea Rev, 2005, 133: 2 583-2 607. [26] XU L, ZHANG Y, LIU H, et al. The role of dynamic transport in the formation of the inverted charge structure in a simulated hailstorm[J]. Sci China Earth Sci, 2016, 59(7): 1 414-1 426. [27] MACGORMAN D R, RUST W D, SCHUUR T J, et al. TELEX the thunderstorm electrification and lightning experiment[J]. Bull Amer Meteor Soc, 2008, 89(7): 997-1 013. [28] KUHLMAN K M, ZIEGLER C L, MAMSELL D R, et al. Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm[J]. Mon Wea Rev, 2006, 134(10): 2 734-2 757. [29] BLACK R A, HALLETT J. Observations of the distribution of ice in hurricanes[J]. J Atmos Sci, 1986, 43(8): 802-822. [30] ZHANG W, ZHANG Y, ZHENG D, et al. Lightning distribution and eyewall outbreaks in tropical cyclones during landfall[J]. Mon Wea Rev, 2012, 140(11): 3 573-3 586. [31] 王芳, 郄秀书, 崔雪东. 西北太平洋地区热带气旋闪电活动的气候学特征及其与气旋强度变化的关系[J]. 大气科学, 2017, 41(6): 1 167-1 176. [32] PAN L, QIE X, WANG D. Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean[J]. Adv Atmos Sci, 2014, 31(3): 581-592. [33] ZHANG W, ZHANG Y, ZHENG D, et al. Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific[J]. J Geophys Res, 2015, 120(9): 4 072-4 089. [34] STEVENSON S N, CORBOSIERO K L, DEMARIA M, et al. A 10-year survey of tropical cyclone inner-core lightning bursts and their relationship to intensity change[J]. Wea. Forecasting, 2018, 33(1): 23-36. [35] ABARCA S F, CORBOSIERO K L. The World Wide Lightning Location Network and convective activity in tropical cyclones[J]. Mon Wea Rev, 2011, 139(1): 175-191. [36] MOLINARI J, MRRE P K, IDONE V P, et al. Cloud-to-ground lightning in Hurricane Andrew[J]. J Geophys Res, 1994, 99(D8): 16 665-16 676. [37] ZHANG W, RUTLEDGE S A, XU W, et al. Inner-core lightning outbreaks and convective evolution in Super Typhon Haiyan(2013)[J]. Atmos Res, 2019, 219: 123-139. [38] XU W, RUTLEDGE S A, ZHANG W. Relationships between total lightning, deep convection, and tropical cyclone intensity change[J]. J Geophys Res, 2017, 122: 7 047-7 063. [39] BLACK R A, HALLETT J. Electrification of the hurricane[J]. J Atmos Sci, 1999, 56(12): 2 004-2 028. [40] 潘伦湘, 郄秀书. 0709号超强台风圣帕(Sepat)的闪电活动特征[J]. 大气科学, 2019, 34(6): 1 088-1 098. [41] FIERRO A O, LELIE L, MANELL E, et al., A high resolution simulation of the microphysics and electrification in an idealized hurricanelike vortex[J]. Meteorol Atmos Phys, 2007, 98(1-2): 13-33. [42] CECIL D J, ZIPSER E J, NESBITT S W. Reflectivity, ice scattering, and lightning characteristics of hurricane eye-walls and rainbands. Part I: Quantitative description[J]. Mon Wea Rev, 2002, 130(4): 769-784. [43] CECIL D J, ZIPSER E J, NESBITT S W. Reflectivity, ice scattering, and lightning characteristics of hurricane eye-walls and rainbands. Part II: Intercomparison of observations[J]. Mon Wea Rev, 2002, 130(4): 785-801. [44] HOUZE JR R A. Clouds in tropical cyclones[J]. Mon Wea Rev, 2010, 138(2): 293-344. [45] LÓPEZ J A, PINEDA N, MONTANYÀJ, et al. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array[J]. Atmos Res, 2017, 197: 255-264. [46] YOU J, ZHENG D, ZHANG Y, et al. Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations[J]. Atmos Res, 2019, 223: 98-113. [47] ZHENG D, ZHANG Y, MENG Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells[J]. J Geophys Res Atmos, 2018, 123: 12 857-12 876. [48] ZHENG D, WANG D, ZHANG Y, et al. Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms[J]. J Geophys Res Atmos, 2019, 124: 7 179-7 206. [49] CHRONIS T G., CUMMINS K, SAID R, et al. Climatological diurnal variation of negative CG lightning peak current over the continental United States[J]. J Geophys Res Atmos, 2015, 120(2): 582-589. [50] PETERSON M, DEIERLING W, LIU C, et al. The properties of optical lightning flashes and the clouds they illuminate[J]. J Geophys Res Atmos, 2017, 122(1): 423-442. [51] ZHANG Z, ZHENG D, ZHANG Y, et al. Spatial-temporal characteristics of lightning flash size in a supercell storm[J]. Atmos Res, 2017, 197: 201-210. [52] BRUNING E C, MACGORMAN D R. Theory and observations of controls on lightning flash size spectra[J]. J Atmos Sci, 2013, 70(12): 4 012-4 029. [53] MACGORMAN D R. Meteorological aspects of lightning and thunderstorm electrification[C]//XVI International Conference on Atmospheric Electricity, 17-22 June 2018, Nara city, Nara, Japan.