ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷暴闪电活动特征研究进展

郑栋 张文娟 姚雯 徐良韬 王飞

郑栋, 张文娟, 姚雯, 徐良韬, 王飞. 雷暴闪电活动特征研究进展[J]. 热带气象学报, 2021, 37(3): 289-297. doi: 10.16032/j.issn.1004-4965.2021.027
引用本文: 郑栋, 张文娟, 姚雯, 徐良韬, 王飞. 雷暴闪电活动特征研究进展[J]. 热带气象学报, 2021, 37(3): 289-297. doi: 10.16032/j.issn.1004-4965.2021.027
ZHENG Dong, ZHANG Wenjuan, YAO Wen, XU Liangtao, WANG Fei. RESEARCH PROGRESS OF LIGHTNING ACTIVITY IN THUNDERSTORMS[J]. Journal of Tropical Meteorology, 2021, 37(3): 289-297. doi: 10.16032/j.issn.1004-4965.2021.027
Citation: ZHENG Dong, ZHANG Wenjuan, YAO Wen, XU Liangtao, WANG Fei. RESEARCH PROGRESS OF LIGHTNING ACTIVITY IN THUNDERSTORMS[J]. Journal of Tropical Meteorology, 2021, 37(3): 289-297. doi: 10.16032/j.issn.1004-4965.2021.027

雷暴闪电活动特征研究进展

doi: 10.16032/j.issn.1004-4965.2021.027
基金项目: 

国家重点研发计划课题 2017YFC1501503

中国气象科学研究院基本科研业务费重点项目 2020Z009

详细信息
    通讯作者:

    郑栋,男,河南省人,研究员,博士,主要从事大气电学研究。E-mail:zhengdong@cma.gov.cn

  • 中图分类号: P468.0

RESEARCH PROGRESS OF LIGHTNING ACTIVITY IN THUNDERSTORMS

  • 摘要: 从一般雷暴、灾害性雷暴和台风的闪电活动特征以及雷暴闪电尺度特征四个方面对相关研究进行梳理。一般雷暴通常具有正常极性电荷结构,云/地闪比例在3左右(中纬度地区),地闪中正地闪占比为10%左右,负地闪位置往往更集中于对流区。灾害性雷暴倾向具有活跃的云闪,低比例的地闪,易出现反极性电荷结构,正地闪比例偏高。闪电活动与灾害性天气现象之间存在关联性,部分雹暴过程具有两次闪电活跃阶段。台风中大部分闪电发生在外雨带,眼壁/外雨带闪电爆发很可能预示气旋强度的增强以及路径的改变。由闪电持续时间、通道空间扩展所表征的闪电尺度与雷暴对流强度相关。弱对流雷暴或雷暴的弱对流区域可能由水平扩展、垂直分层的电荷分布形态主导,闪电频次低,闪电空间尺度大;强对流雷暴或雷暴的强对流区域可能由交错分布的小电荷区主导,闪电频次高,闪电尺度小。

     

  • 图  1  2007年5月30(13时12分起)—31日(02时01分止)发生在湖北的一次雷暴过程中地闪(CG Flashes)、正地闪(PCG Flashes)和负地闪(NCG Flashes)以及正地闪占比随时间演变

    22:07 UTC后正地闪比例明显增大。引自Zheng等[3]图3

    图  2  2007年7月10日北京一次雹暴个例中基于2σ闪电跃变算法得到的闪电跃变信号

    闪电跃变超过阈值的时刻(图中红色柱,21:39)超前地面观测到降雹时刻(22:00BT)21 min。引自Yao等[17]图5

    图  3  综合郑栋等[14]、王晨曦等[13]和Xu等[15]的研究绘制的两种情形下雹暴闪电两次活跃阶段特征和形成机制的概念图

    图中第二行的雹暴对应Xu等[15]中分析的天津的雹暴个例,第一行的雹暴情形参考其它个例。

    图  4  台风“百合”(2001)近海和登陆期间眼壁闪电频次和台风强度变化图(a)和路径转向图(b)

    眼壁闪电爆发①②③发生在台风转向阶段,④发生在台风登陆前的快速增强阶段,⑤⑥发生在登陆后强度减弱阶段。引自Zhang等[30]图7

    图  5  2004年10月5日美国新墨西哥州一次超级单体过程三个连续体扫对应的闪电活动和雷暴结构

    a1、b1和c1的彩色底图表示平均闪电凸壳面积(表征闪电通道的水平扩展大小),黑色曲线对应底层雷达反射率廓线(由外到内分别对应10 dBZ、30 dBZ、50 dBZ和60 dBZ),绿色曲线表示闪电起始密度(由外到内的值为0.5 fl/km2、3 fl/km2和5 fl/km2),红色曲线对应闪电扩展密度(根据闪电通道是否穿越进行统计,由外到内的值为1.5 fl/km2、3 fl/km2、10 fl/km2和20 fl/km2),黑色直线显示了右侧雷达垂直剖面图的水平位置。a2、b2和c2展示了雷达垂直剖面与闪电初始位置的叠加。注意闪电凸壳面积的小值中心与闪电起始和闪电扩展面积的大值中心在水平空间上相对应,闪电起始高密度区位于强反射率柱上部。引自Zhang等[51]图7

  • [1] MACKERRAS D M, DARVENIA R E, ORVILE E R, et al. Global lightning: Total, cloud and ground flash estimates[J]. J Geophys Res, 1998, 103(D16): 19 791-19 809.
    [2] YANG X, SUN J, LI W. An analysis of cloud-to-ground lightning in China during 2010-13[J]. Wea Forecasting, 2015, 30(6): 1 537-1 550.
    [3] ZHENG D, ZHANG Y, MENG Q, et al. Lightning activity and electrical structure in a thunderstorm that continued for more than 24h[J]. Atmos Res, 2010, 97(1-2): 241-256.
    [4] RUTLEDGE S A, PETERSEN W A. Vertical radar reflectivity structure and cloud-to-ground lightning in the stratiform region of MCSs: Further evidence for in-situ charging in the stratiform region[J]. Mon Wea Rev, 1994, 122(8): 1 760-1 776.
    [5] LIU D, QIE X, XIONG Y, et al. Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing[J]. Adv Atmos Sci, 2011, 28(4): 866-878.
    [6] WANG C, ZHENG D, ZHANG Y, et al. Relationship between lightning activity and vertical airflow characteristics in thunderstorms[J]. Atmos Res, 2017, 191: 12-19.
    [7] 张义军, 孟青, KREHBIEL P R. 正地闪发展的时空结构特征与闪电双向先导[J]. 中国科学D辑: 地球科学, 2006, 36(1): 98-108.
    [8] SHACKFORD C R. Radar indications of a precipitation-lightning relationship in New England thunderstorms[J]. J Atmos Sci, 1960, 17(1): 15-19.
    [9] ZHENG D, MACGORMAN D R. Characteristics of flash initiations in a supercell cluster with tornadoes[J]. Atmos Res, 2016, 167: 249-264.
    [10] 徐爽. 京津地区雹暴过程的闪电活动特征研究[D]. 南京: 南京信息工程大学, 2016.
    [11] 冯桂力, 郄秀书, 袁铁, 等. 雹暴的闪电活动特征与降水结构研究[J]. 中国科学D辑: 地球科学, 2007, 37(1): 123-132.
    [12] ZHANG Y, MENG Q, KREHBIEL P R, et al. Spatial and temporal characteristics of VHF radiation source produced lightning in supercell thunderstorms[J]. Chin Sci Bull, 2004, 49(6): 624-631.
    [13] 王晨曦, 郑栋, 张义军, 等. 一次雹暴过程的闪电活动特征及其与雹暴结构的关系[J]. 热带气象学报, 2014, 30(6): 1 127-1 136.
    [14] 郑栋, 张义军, 孟青, 等. 一次雹暴的闪电特征和电荷结构演变研究[J]. 气象学报, 2010, 68(2): 248-263.
    [15] XU S, ZHENG D, WANG Y, et al. Characteristics of the two active stages of lightning activity in two hailstorms[J]. J Meteor Res, 2016, 30(2): 265-281.
    [16] MACGORMAN D R, BURGESS D W. Positive cloud-to-ground lightning in tornadic storms and hailstorms[J]. Mon Wea Rev, 1994, 122(8): 1 671-1 697.
    [17] YAO W, ZHANG Y, MENG Q, et al. A comparison of the characteristics of total and cloud-to-ground lightning activities in hailstorms[J]. Acta Meteor Sinica, 2013, 27(2): 282-293.
    [18] WILLIAMS E, BOLDI B, MATLIN A, et al. The behavior of total lightning activity in severe Florida thunderstorms[J]. Atmos Res, 1999, 51(3): 245-265.
    [19] 田野, 姚雯, 尹佳莉, 等. 不同闪电跃增算法在北京地区应用效果对比[J]. 应用气象学报, 2021, 32(2): 217-232.
    [20] GOODMAN S J, BLAKESLEE R, CHRISTIAN H, et al. The North Alabama Lightning Mapping Array: recent severe storm observations and future prospects[J]. Atmos Res, 2005, 76(1-4): 423-437.
    [21] GATIN P N. Severe weather precursors in the lightning activity of Tennessee valley thunderstorms[D]. Master Thesis, The University of Alabama in Huntsville, USA, 2007.
    [22] GATIN P N, GOODMAN S J. A total lightning trending algorithm to identify severe thunderstorms[J]. J Atmos Oceanic Technol, 2010, 27(27): 3-22.
    [23] MACGORMAN D R, BURGESS D W, MAZUR V, et al. Lightning rates relative to tornadic storm evolution on 22 May 1981[J]. J Atmos Sci, 1989, 46(2): 221-250.
    [24] TAKAHASHI T. Riming electrification as a charge generation mechanism in thunderstorms[J]. J Atmos Sci, 1978, 35(8): 1536-1548.
    [25] MACGORMAN D R, RUST W D, KREHBIEL P R, et al. The electrical structure of two supercell storms during STEPS[J]. Mon Wea Rev, 2005, 133: 2 583-2 607.
    [26] XU L, ZHANG Y, LIU H, et al. The role of dynamic transport in the formation of the inverted charge structure in a simulated hailstorm[J]. Sci China Earth Sci, 2016, 59(7): 1 414-1 426.
    [27] MACGORMAN D R, RUST W D, SCHUUR T J, et al. TELEX the thunderstorm electrification and lightning experiment[J]. Bull Amer Meteor Soc, 2008, 89(7): 997-1 013.
    [28] KUHLMAN K M, ZIEGLER C L, MAMSELL D R, et al. Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm[J]. Mon Wea Rev, 2006, 134(10): 2 734-2 757.
    [29] BLACK R A, HALLETT J. Observations of the distribution of ice in hurricanes[J]. J Atmos Sci, 1986, 43(8): 802-822.
    [30] ZHANG W, ZHANG Y, ZHENG D, et al. Lightning distribution and eyewall outbreaks in tropical cyclones during landfall[J]. Mon Wea Rev, 2012, 140(11): 3 573-3 586.
    [31] 王芳, 郄秀书, 崔雪东. 西北太平洋地区热带气旋闪电活动的气候学特征及其与气旋强度变化的关系[J]. 大气科学, 2017, 41(6): 1 167-1 176.
    [32] PAN L, QIE X, WANG D. Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean[J]. Adv Atmos Sci, 2014, 31(3): 581-592.
    [33] ZHANG W, ZHANG Y, ZHENG D, et al. Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific[J]. J Geophys Res, 2015, 120(9): 4 072-4 089.
    [34] STEVENSON S N, CORBOSIERO K L, DEMARIA M, et al. A 10-year survey of tropical cyclone inner-core lightning bursts and their relationship to intensity change[J]. Wea. Forecasting, 2018, 33(1): 23-36.
    [35] ABARCA S F, CORBOSIERO K L. The World Wide Lightning Location Network and convective activity in tropical cyclones[J]. Mon Wea Rev, 2011, 139(1): 175-191.
    [36] MOLINARI J, MRRE P K, IDONE V P, et al. Cloud-to-ground lightning in Hurricane Andrew[J]. J Geophys Res, 1994, 99(D8): 16 665-16 676.
    [37] ZHANG W, RUTLEDGE S A, XU W, et al. Inner-core lightning outbreaks and convective evolution in Super Typhon Haiyan(2013)[J]. Atmos Res, 2019, 219: 123-139.
    [38] XU W, RUTLEDGE S A, ZHANG W. Relationships between total lightning, deep convection, and tropical cyclone intensity change[J]. J Geophys Res, 2017, 122: 7 047-7 063.
    [39] BLACK R A, HALLETT J. Electrification of the hurricane[J]. J Atmos Sci, 1999, 56(12): 2 004-2 028.
    [40] 潘伦湘, 郄秀书. 0709号超强台风圣帕(Sepat)的闪电活动特征[J]. 大气科学, 2019, 34(6): 1 088-1 098.
    [41] FIERRO A O, LELIE L, MANELL E, et al., A high resolution simulation of the microphysics and electrification in an idealized hurricanelike vortex[J]. Meteorol Atmos Phys, 2007, 98(1-2): 13-33.
    [42] CECIL D J, ZIPSER E J, NESBITT S W. Reflectivity, ice scattering, and lightning characteristics of hurricane eye-walls and rainbands. Part I: Quantitative description[J]. Mon Wea Rev, 2002, 130(4): 769-784.
    [43] CECIL D J, ZIPSER E J, NESBITT S W. Reflectivity, ice scattering, and lightning characteristics of hurricane eye-walls and rainbands. Part II: Intercomparison of observations[J]. Mon Wea Rev, 2002, 130(4): 785-801.
    [44] HOUZE JR R A. Clouds in tropical cyclones[J]. Mon Wea Rev, 2010, 138(2): 293-344.
    [45] LÓPEZ J A, PINEDA N, MONTANYÀJ, et al. Spatio-temporal dimension of lightning flashes based on three-dimensional Lightning Mapping Array[J]. Atmos Res, 2017, 197: 255-264.
    [46] YOU J, ZHENG D, ZHANG Y, et al. Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations[J]. Atmos Res, 2019, 223: 98-113.
    [47] ZHENG D, ZHANG Y, MENG Q. Properties of negative initial leaders and lightning flash size in a cluster of supercells[J]. J Geophys Res Atmos, 2018, 123: 12 857-12 876.
    [48] ZHENG D, WANG D, ZHANG Y, et al. Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms[J]. J Geophys Res Atmos, 2019, 124: 7 179-7 206.
    [49] CHRONIS T G., CUMMINS K, SAID R, et al. Climatological diurnal variation of negative CG lightning peak current over the continental United States[J]. J Geophys Res Atmos, 2015, 120(2): 582-589.
    [50] PETERSON M, DEIERLING W, LIU C, et al. The properties of optical lightning flashes and the clouds they illuminate[J]. J Geophys Res Atmos, 2017, 122(1): 423-442.
    [51] ZHANG Z, ZHENG D, ZHANG Y, et al. Spatial-temporal characteristics of lightning flash size in a supercell storm[J]. Atmos Res, 2017, 197: 201-210.
    [52] BRUNING E C, MACGORMAN D R. Theory and observations of controls on lightning flash size spectra[J]. J Atmos Sci, 2013, 70(12): 4 012-4 029.
    [53] MACGORMAN D R. Meteorological aspects of lightning and thunderstorm electrification[C]//XVI International Conference on Atmospheric Electricity, 17-22 June 2018, Nara city, Nara, Japan.
  • 加载中
图(5)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  48
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-09-27
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回