PROGRESS OF OBSERVATION AND STUDY ON CMA_FEBLS LOW FREQUENCY THREE-DIMENSIONAL TOTAL LIGHTNING FLASH DETECTION TECHNOLOGY IN THE LAST DECADE
-
摘要: 三维全闪探测已经成为了深入认识闪电物理机制和雷暴电活动规律的重要手段。中国气象局雷电野外科学试验基地(CMA_FEBLS)自主研发了低频电场探测阵列(LFEDA), 并持续开展了针对广东地区雷暴全闪电活动的综合观测试验, 在精细化三维定位算法和基于三维全闪数据的闪电放电过程研究方面取得了若干研究结果。(1) LFEDA具备雷暴电活动的无死时间捕获能力、优于百米的定位精度和一定的通道定位能力。(2)发展了基于简单脉冲特征的三维全闪定位算法, 并进一步将经验模态分解及衍生方法引入到闪电信号处理中, 提高了定位的精细化水平; 发展了融合到达时差和时间反转技术的定位方法, 提升了抗干扰能力、降低了对站网的要求。(3)实现了典型放电事件的电流波形反演, 获得了窄偶极性放电事件(NBE)、初始击穿脉冲(IBP)和爆发式脉冲簇(RBPs)的放电特征; 研究发现绝大多数闪电始发于IBP, 而作为始发的NBE则具有更大的孤立性、更大的相对幅度和更快的发展速度。(4)发现随着起始放电高度增加, 初始阶段持续时间和步长增加, 发展速度和脉冲丰度下降; 始发于强对流区时始发阶段通常有更大的速度和脉冲丰度。Abstract: The detection of three-dimensional(3D) total lightning flash based on low-frequency signal has become an important means for researchers to deeply understand the physical mechanism of lightning and the law of thunderstorm activity. The low-frequency electric field detection array(LFEDA) has been developed independently in the Field Experiment Base on Lightning Sciences, China Meteorological Administration(CMA_FEBLS), and comprehensive observation experiments for the lightning activity of thunderstorms in Guangdong Province have been carried out continuously. Some progresses have been obtained in the research of refined 3D positioning algorithm and lightning discharge based on 3D total lightning flash data.(1) LFEDA can continuously capture thunderstorm discharge signal without dead time, with positioning accuracy less than 100 m and good channel positioning ability.(2) A 3D total lightning flash positioning algorithm based on simple pulse characteristics has been developed, and the empirical mode decomposition and its derivative method have been introduced to lightning signal processing to improve positioning. A new positioning method that integrates time difference of arrival and time reversal technology has been proposed, which improves the anti-interference ability and reduces the requirements on the station network.(3) The current waveforms of typical discharge events are inversed, and the discharge characteristics of narrow dipolar discharge events(NBE), initial breakdown pulses(IBP) and burst pulse clusters are obtained. It is found that most of the lightning flashes originate from IBP, and NBE, as the initiator, has greater isolation, larger relative amplitude, and faster development speed.(4)With the increase of the initial discharge height, the duration and step length of the initial stage increase, while the development speed and pulse abundance decrease; when the lightning initiates in a strong convective region, there is usually a greater speed and pulse abundance in the initial stage.
-
Key words:
- three-dimension /
- low frequency /
- total lightning flash /
- detection technology /
- progress
-
图 1 低频电场探测阵列站网布局图(A)、一次云-地闪的三维定位结果图(B)[18]
点的颜色代表时间。a. 放电高度随时间的分布;b. 放电高度在东西方向的分布;c. 随高度放电事件的个数分布;d. 放电事件的东西-南北平面分布;e. 放电高度在南北方向上的分布。
图 6 基于反演电流得到的电场和实测电场的对比
a. CHJ站的对比结果;b. ZCJ站的对比结果[26]。
图 7 闪电始发过程的定位结果和对应的电场波形
▲表示始发放电事件。a. 正极性NBE始发过程;b. 负极性NBE始发过程;c. 正极性IBP始发过程;d. 负极性IBP始发过程[31]。
-
[1] CUMMINS K L, MURPHY M J, BARDO E A, et al. A combined TOA/MDF technology upgrade of the U. S. National Lightning Detection Network[J]. J Geophys Res, 1998, 103(D8): 9 038-9 044. [2] 王志超, 庞文静, 梁丽, 等. ADTD闪电定位网在北京地区定位效率的自评估[J]. 气象科技, 2018, 46(4): 638-643. [3] CHEN L W, ZHANG Y J, LU W T, et al. Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes[J]. J Atmos Oceanic Technol, 2012, 29(12): 1 835-1 844. [4] ZHU Y, RAKOV V A, TRAN M D, et al. A study of National Lightning Detection Network responses to natural lightning based on ground truth data acquired at LOG with emphasis on cloud discharge activity[J]. J Geophys Res Atmos, 2016, 121(24): 14 651-14 660. [5] BETZ H D, SCHMIDT K, LAROCHE P, et al. LINET—An international lightning detection network in Europe[J]. Atmos Res, 2009, 91(2-4): 564-573. [6] 田彩霞, 马启明, 周晓, 等. 江苏省三维闪电定位系统算法仿真[J]. 武汉大学学报(理工版), 2014, 60(2): 115-121. [7] 郭润霞, 王迎春, 张文龙, 等. 基于VLF/LF三维闪电监测定位系统的北京闪电特征分析[J]. 热带气象学报, 2018, 34(3): 393-400. [8] SMITH D A, EACK K B, HARLIN J, et al. The Los Alamos Sferic Array: A research tool for lightning investigations[J]. J Geophys Res, 2002, 107(D13): 4 183. [9] SHAO X M, STANLEY M, REGAN A, et al. Total lightning observations with the new and improved Los Alamos Sferic Array(LASA)[J]. J Atmos Oceanic Technol, 2006, 23(10): 1 273-1 288. [10] YOSHIDA S, WU T, USHIO T, et al. Initial results of LF sensor network for lightning observation and characteristics of lightning emission in LF band[J]. J Geophys Res Atmos, 2014, 119(21): 12 034-12 051. [11] WANG Y, QIE X S, WANG D F, et al. Beijing Lightning Network(BLNET)and the observation on preliminary breakdown processes[J]. Atmos Res, 2016, 171(1): 121-132. [12] 王东方, 郄秀书, 袁铁, 等. 利用快电场变化脉冲定位进行云闪初始放电过程的研究[J]. 气象学报, 2009, 67(1): 165-174. [13] 秦子龙, 祝宝友, 吕凡超, 等. 利用雷暴闪电事件监测电离层D层日间波动[J]. 科学通报, 2015, 60(7): 654-663. [14] LYU F C, CUMMER S A, SOLANKI R, et al. A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array[J]. Geophys Res Lett, 2014, 41(22): 7 777-7 784. [15] WU T, WANG D H, TAKAGI N. Lightning mapping with an array of fast antennas[J]. Geophys Res Lett, 2018, 45: 3 698-3 705. [16] YUAN S, QIE X, JIANG R, et al. Origin of an uncommon multiple-stroke positive cloud-to-ground lightning flash with different terminations[J]. J Geophys Res Atmos, 2020, 125: e2019JD032098. [17] 张晓黄. 低频磁场闪电辐射源三维定位及FY-4A闪电成像仪探测性能初步评估[D]. 南京: 南京信息工程大学, 2019. [18] SHI D D, ZHENG D, ZHANG Y, et al. Low-frequency E-field Detection Array(LFEDA)—Construction and preliminary results[J]. Science China Earth Sciences, 2017, 60(10): 1 896-1 908. [19] WU T, WANG D H, TAKAGI N. Upward negative leaders in positive upward lightning in winter: propagation velocities, electric field change waveforms, and triggering mechanism[J]. J Geophys Res Atmos, 2020, 125(16): e2020JD032851. [20] ZHENG D, SHI D D, ZHANG Y, et al. Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions[J]. J Geophys Res Atmos, 2019, 124(14): 8 025-8 042. [21] 张阳, 张义军, 吕伟涛. 闪电电场变化信号测量系统及方法[P]. 北京: CN102680804A, 2014-12-24. [22] 张义军, 吕伟涛, 陈绍东, 等. 广东野外雷电综合观测试验十年进展[J]. 气象学报, 2016, 74(5): 655-671. [23] FAN X P, ZHANG Y J, ZHENG D, et al. A new method of three-dimensional location for low-frequency electric field detection array[J]. J Geophys Res Atmos, 2018, 123(16): 8 792-8 812. [24] FAN X P, ZHANG Y J, KREHBIEL P R, et al., Application of ensemble empirical mode decomposition in low-frequency lightning electric field signal analysis and lightning location[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 86-100. [25] CHEN Z F, ZHANG Y, ZHENG D, et al. A method of three-dimensional location for LFEDA combining the time of arrival method and the time reversal technique[J]. J Geophys Res Atmos, 2019, 124(12): 6 484-6 500. [26] 张骁. 基于全闪探测数据的闪电始发放电事件研究[D]. 成都: 成都信息工程大学, 2018. [27] 范祥鹏. 基于LF/VLF快电场的闪电精细化定位和通道电参量反演方法研究[D]. 北京: 中国气象科学研究院, 2019. [28] KARUNARATHNE S, MARSHALL T C, STOLZENBURG M, et al. Modeling initial breakdown pulses of CG lightning flashes[J]. J Geophys Res Atmos, 2014, 119(14): 9 003-9 019. [29] ZHANG Y, ZHANG Y J, ZHENG D, et al. Preliminary breakdown, following lightning discharge processes and lower positive charge region[J]. Atmos Res, 2015, 16(1-2): 52-56. [30] RISON W, KREHBIEL P R, STOCK M G, et al. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms[J]. Nature communications, 2016, 7: 10 721. [31] 张骁, 张阳, 张义军, 等. NBE和IBP始发的闪电初始特征[J]. 应用气象学报, 2018, 29(3): 364-373. [32] WU T, YOSHIDA S, USHIO T, et al. Lightning initiator type of narrow bipolar events and their subsequent pulse trains[J]. 2014, 119(12): 7 425-7 438. [33] WU T, YOSHIDA S, AKIYAMA Y, et al. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation[J]. J Geophys Res Atmos, 2015, 120(18): 9 071-9 086. [34] 史东东. 基于低频电场脉冲的闪电定位及闪电起始与雷暴结构关系研究[D]. 南京: 南京信息工程大学, 2017.