ANALYSIS OF ZnO SURGE PROTECTIVE DEVICE DAMAGE CAUSED BY GROUND POTENTIAL RISE IN ONE TRIGGERED LIGHTNING FLASH
-
摘要: 基于触发闪电开展了电流注入地网后地电位抬升反击氧化锌电涌保护器的试验研究。结合真实雷电环境下测量的电涌保护器两端残压和流经电流的数据, 对一次触发闪电引发的氧化锌电涌保护器损坏事件进行了分析。分析发现, 电流注入地网后, 回击过程瞬间的大能量和长连续电流过程累积的能量相互叠加共同作用损坏了氧化锌电涌保护器。回击发生时, 较大的地电位抬升反击特别是电压的快速上升阶段, 氧化锌电涌保护器内部半导体结构(晶界层或晶粒)很容易遭到局部破坏, 形成穿孔, 电压波沿着破坏的晶界层“漏洞”迅速通过, 氧化锌电阻片失去钳制作用, 而当电压缓慢下降时, 电压在氧化锌电涌保护器内部晶界层的分布趋于均匀, 没有损坏的晶界结构又恢复了氧化锌电涌保护器的钳制功能。长连续电流过程形成的残压较小, 但其持续时间很长, 可达几十甚至上百毫秒, 事件中多次致使SPD钳制功能的失效。4次回击过程地电位抬升反击流经氧化锌电涌保护器的电流峰值最大为7.1 kA, 平均值5.4 kA, 占触发闪电注入电流的28.9%。流经SPD的电量范围0.15~0.58 C, 平均值0.44 C, 其值大于8/20 μs标称放电电流20 kA单脉冲释放的电量(0.37 C)。Abstract: Based on triggered lightning, this paper carries out an experimental study on the counterattack of ground potential rise(GPR) to a surge protective device(SPD) after a current is injected into the grounding grid. Then, the paper analyzes the ZnO SPD damage event by considering the measured data of residual voltage at the two terminals of the SPD, as well as the current flowing through it in a real lightning environment. The analysis shows that, after the current is injected into the grounding grid, the ZnO SPD is damaged under the joint influence of mutually-superimposed instantaneous large energy in the return strokes and accumulated energy in the long continuous current process. When a return stroke occurs, due to the impulse of large GRP, particularly in the stage where the voltage rapidly rises, the semiconductor structure(grain boundary layer or grain) in the SPD is prone to partial damage, and holes are formed. After this, the voltage wave quickly passes through the"holes"along the damaged grain boundary layer and the ZnO resistor loses its clamping effect. When the voltage drops slowly, the distribution of voltages in the grain boundary layer of the SPD tends to be uniform, while the undamaged grain boundary structure enables the SPD to restore its clamping function. The residual voltage formed in the long continuous current process is small but lasts for a long period of time(tens or even hundreds of milliseconds). This disables the clamping function of the SPD for several times during the event. The maximum peak value of the current flowing through the SPD due to the GPR counterattack during the four return strokes is 7.1 kA, with a mean value of 5.4 kA, accounting for 28.9% of the injected current in the triggered lightning. The electrical quantity flowing through the SPD ranges from 0.15 to 0.58 C, with a mean value of 0.44 C, which is greater than that discharged from a single pulse of the nominal discharge current 8/20 μs of 20 kA(0.37 C).
-
表 1 T0725闪电通道底部电流波形特征参数表
编号 电流峰值/kA 半峰宽度/µs 10%~90%上升时间/µs 上升沿平均陡度/(kA/µs) 电量/C RS1 15.9 25.8 0.49 26.4 0.88 RS2 24.2 12.5 0.26 75.7 1.64 RS3 10.5 11.1 0.37 22.8 0.44 RS4 26.1 5.2 0.31 68.5 1.67 AVE 19.2 13.7 0.36 48.4 1.16 表 2 T0725流经SPD接地线电流波形特征参数表
编号 接地线电流/kA 半峰宽度/µs 10%~90%上升时间/µs 上升沿平均陡度/(kA/µs) 电量/C RS1 5.6 78.1 3.2 1.38 0.58 RS2 7.1 68.6 15.5 0.36 0.58 RS3 3.1 35.9 2.4 1.06 0.15 RS4 5.6 66.3 10.5 0.42 0.44 AVE 5.4 62.2 7.9 0.80 0.44 -
[1] 颜旭, 张义军, 陈绍东, 等. 1次人工触发闪电引起的临近地网电位升高及其特征分析[J]. 高电压技术, 2017(5): 256-263. [2] 郭在华, 朱良, 陈绍东, 等. 共用地网地电位升高观测及特征分析[J]. 高电压技术, 2016, 42(11): 3 488-3 494. [3] 朱良, 陈绍东, 颜旭, 等. 基于触发闪电的共用地网雷电流分布观测及分析[J]. 高电压技术, 2018(5): 1 715-1 722. [4] EDA K. Destruction mechanism of ZnO varistors due to high currents[J]. J Appl Phys, 1984, 56(10): 2 948-2 955. [5] SAKSHAUG E C, BURKE J J, KRESGE J S. Metal oxide arresters on distribution systems: fundamental considerations[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 2 076-2 089. [6] RINGLER K G, KIRKBY P, ERVEN C C, et al. The energy absorption capability and time-to-failure of varistors used in station-class metaloxide surge arresters[J]. IEEE Transactions on Power Delivery, 1997, 12(1): 203-212. [7] 何金良, 吴维韩, 沈力, 等. ZnO阀片的冲击破坏机理[J]. 中国电机工程学报, 1993(S1): 34-38. [8] RAKOV V A, UMAN M A. Lightning physics and effects[M]. Cambridge, UK: Cambridge University Press, 2003. [9] SONDER E, LEVINSON L M, KATZ W. Role of short-circuiting pathways in reduced ZnO varistors[J]. J Appli Phys, 1985, 58(11): 4 420-4 425. [10] 彭春华, 王奎, 孙惠娟. 基于支持向量机的避雷器均压环结构优化[J]. 高电压技术, 2016, 42(11): 3 429-3 435. [11] 李鹏飞, 张春龙, 吕东波, 等. 多脉冲雷电冲击下金属氧化物的破坏形式[J]. 高电压技术, 2017, 43(11): 3 792-3 799. [12] 李鹏飞, 杨仲江, 曹洪亮, 等. MOA在多脉冲冲击下老化性能研究[J]. 中国电力, 2016, 49(1): 69-74. [13] YANG S J, CHEN S D, ZHANG Y J, et al. Characteristics analysis of the induced overcurrent generated by close triggered lightning on the overhead transmission power line[J]. J Trop Meteor, 2010, 16(1): 59-65. [14] CHEN S, ZHANG Y, CHEN C, et al. Influence of the ground potential rise on the residual voltage of low-voltage surge protective devices due to nearby lightning flashes[J]. IEEE Transactions on Power Delivery, 2015, 31(2): 596-604. [15] BARKER P P, MANCAO R T, KVALTINE D J, et al. Characteristics of lightning surges measured at metal oxide distribution arresters[J]. IEEE Transactions on Power delivery, 1993, 8(1): 301-310. [16] SCHOENE J, UMAN M A, RAKOV V A, et al. Direct lightning strikes to test power distribution lines—Part I: Experiment and overall results[J]. IEEE Transactions on Power Delivery, 2007, 22(4): 2 236-2 244. [17] GUO Z, WU G, CHEN S, et al. Transient behavior of common grounding grids to artificially triggered lightning[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 61(2): 426-433. [18] DECARLO B A, RAKOV V A, JERAULD J E, et al. Distribution of currents in the lightning protective system of a residential building—Part I: Triggered-lightning experiments[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 2 439-2 446. [19] SCHOENE J, UMAN M A, RAKOV V A, et al. Lightning currents flowing in the soil and entering a test power distribution line via its grounding[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1 095-1 103. [20] MATA C T, RAKOV V A, RAMBO K J, et al. Measurement of the division of lightning return stroke current among the multiple arresters and grounds of a power distribution line[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1 203-1 208.