ANALYSIS OF CHARACTERISTICS OF CLOUD-TO-GROUND LIGHTNING ACTIVITY OF THUNDERSTORMS OVER DIFFERENT TOPOGRAPHY IN CENTRAL CHINA
-
摘要: 利用湖北省2013—2018年6—8月ADTD闪电探测数据对该地区的闪电活动进行特征分析后发现, 地闪密度和日变化特征与地形密切相关, 其中, 闪电密度高值区出现在海拔500~1 500 m的中尺度山脉向平原的过渡地带以及山脉之间的平原(河谷)地区; 山区的地闪集中在午后至傍晚时段, 具有明显的单峰特征, 平原的地闪日变化相对平缓, 虽然主峰值同样出现在午后, 但夜间地闪活动依然活跃。基于2015—2016年6—8月逐6 min雷达组合反射率拼图产品和地闪资料挑选了94例伴有显著闪电活动的雷暴系统个例, 经统计分析后发现, 雷暴系统的初次地闪、峰值地闪和末次地闪均集中出现在13:00—18:00, 其中, 山区雷暴的地闪持续时间较短, 地闪频数峰值较小; 平原雷暴的地闪持续时间更长, 地闪频数峰值也更大; 山麓雷暴的特征则介于两者之间。利用ERA-Interim再分析资料进行成因分析后可知, 地形强迫和局地热力不稳定是影响湖北山区夏季闪电密度分布和日变化特征的关键因子。Abstract: Based on ADTD lightning detection data from June to August in Hubei Province during 2013—2018, the present study analyzes the characteristics of lightning density and diurnal variation and finds their close relationship with topography. The high value of lightning density appears in the transition zone from mesoscale mountains to plains and the plains(valleys) between mountains at an altitude of 500~1500 m. In the mountainous area, lightning mainly occurs in the period from afternoon to evening, showing obvious unimodal characteristics. By contrast, in the plain, the diurnal variation of the lightning is relatively gentle. Although the main peak value also appears in the afternoon, the lightning activity is still active at night. The present study also analyzes the 6 min data that combine radar composite reflectivity and cloud-to-ground(CG) flash data from June to August during 2015—2016 and selects 94 thunderstorm cases with significant lightning activity. The statistical analysis indicates that the first, peak and final CG flash of the thunderstorm system mainly occur in the afternoon(13:00—18:00). Among them, the mountain thunderstorms have shorter lightning duration and smaller peak of lightning frequency, those of plain thunderstorms are much longer and larger, and the characteristics of thunderstorms in the foothills are somewhere in between. Using the ERA-Interim reanalysis data, the present study finds that topographic forcing and local thermal instability are the key factors affecting the distribution and diurnal variation of summer lightning density in the mountainous areas of Hubei Province.
-
Key words:
- thunderstorm /
- CG flash /
- topography /
- diurnal variation /
-
-
图 1 研究区域(a)及雷暴系统样本分布(b)
彩色阴影代表海拔高度,单位:m;黑色方框表示典型山区和平原,方块表示山区样本,三角形表示平原样本,圆形表示山麓样本,气球表示闪电定位仪,等值线表示湖北省闪电监测网的探测效率[28]。
图 4 2013—2018年夏季湖北省850 hPa(a)、500 hPa(b)复合环境场
白色虚线为散度(单位:10-6s-1), 色斑为850 hPa假相当位温θse(单位:K),彩色等值线为500 hPa位势高度(单位:dgpm)。图中黑色矩形框与图 1相同,分别表示典型山区和平原。
图 7 山区(左列)和平原(右列)雷暴系统初生时刻地面(a、b), 850 hPa(c、d), 500 hPa(e、f)环境分析场(色斑分别表示为CAPE,单位:J/kg;湿度,单位:%;相对涡度,单位:10-6s-1;白色虚线为散度,单位:10-6s-1;黑色等值线为位势高度,单位:dgpm); 850 hPa假相当位温θse与0~6 km垂直风切变(g、h)(色斑为850 hPa假相当位温θse,白色等值线为0~6 km垂直风切变,单位:m/s。)
黑色矩形框与图 1相同,分别表示典型山区和平原。
表 1 湖北省闪电监测网主要技术特征
定位方法 定位方式 探测参数 强度误差 时间精度 定位精度 闪电类型 时差法和定向时差联合法 二站振幅、二站混合、三站混合和四站算法 时间、经度、纬度、 相对误差 < 15% < 10-7 s < 300 m 地闪 -
[1] ZHANG W J, MENG Q, MA M, et al. Lightning casualties and damages in China from 1997 to 2009[J]. Natural Hazards, 2011, 57(2): 465-476. [2] MATSANGOURAS I T, NASTOS P T, KAPSOMENAKIS J. Cloud-to-ground lightning activity over Greece: Spatio-temporal analysis and impacts[J]. Atmos Res, 2015, 169(8): 285-296. [3] ORVILLE R E. Lightning ground flash density in the contiguous United States 1989[J]. Mon Wea Rev, 1991, 119(2): 573-577. [4] ORVILLE R E, HUFFINES G R. Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989-98[J]. Mon Wea Rev, 2001, 129(5): 1 179-1 193. [5] ORVILLE R E, HUFFINES G R, BURROWS W R, et al. The North American Lightning Detection Network(NALDN)—first results: 1998-2000[J]. Mon Wea Rev, 2002, 130(8): 2 098-2 109. [6] ORVILLE R E, HUFFINES G R, BURROWS W R, et al. The North American Lightning Detection Network(NALDN)—Analysis of flash data: 2001-09[J]. Mon Wea Rev, 2011, 139(5): 1 305-1 332. [7] ANDERSON G, KLUGMANN D. A European lightning density analysis using 5 yr of ATDnet data[J]. Natural Hazards and Earth System Sciences, 2014, 14(4): 815-829. [8] TASZAREK M, CZERNECKI B, KOZIO A. A cloud-to-ground lightning climatology for Poland[J]. Mon Wea Rev, 2015, 143(11): 4 285-4 304. [9] GALANAKI E, KOTRONI V, LAGOUVARDOS K, et al. A ten-year analysis of cloud-to-ground lightning activity over the Eastern Mediterranean region[J]. Atmos Res, 2015, 166(7): 213-222. [10] MA M, TAO S C, ZHU B Y, et al. Climatological distribution of lightning density observed by satellites in China and its circumjacent regions[J]. Science in China Series D-Earth Sciences, 2005, 48(2): 219-229. [11] WANG Q. Spatio-temporal analysis of cloud-to-ground lightning activity over Yangzte River Delta, China, 2009-2013[C]//International Conference on Lightning Protection(ICLP), 2014: 2 042-2 046. [12] YANG X, SUN J, LI W. An analysis of cloud-to-ground lightning in China during 2010-2013[J]. Wea Forecasting, 2015, 30(6): 1 537-1 550. [13] XIA R D, ZHANG D L, WANG B L. A 6-yr Cloud-to-Ground Lightning Climatology and Its Relationship to Rainfall over Central and Eastern China[J]. J Appl Meteor Climatol, 2015, 54(12): 2 443-2 460. [14] WU F, CUI X P, ZHANG D L, et al. SAFIR-3000 lightning statistics over the Beijing metropolitan region during 2005-07[J]. J Appl Meteor Climatol, 2016, 55(12): 2 613-2 633. [15] KOTRONI V, LAGOUVARDOS K. Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean[J]. J Geophys Res Atmos, 2008, 113, D21118. [16] BOURSCHEIDT V, O PINTO, NACCARATO K P, et al. The influence of topography on the cloud-to-ground lightning density in South Brazil[J]. Atmos Res, 2009, 91(6): 508-513. [17] MAZARAKIS N, KOTRONI V, LAGOUVARDOS K. Storms and lightning activity in Greece during the warm periods of 2003-06[J]. J Appl Meteor Climatol, 2008, 47(12): 3 089-3 098. [18] CUMMINS K L. Mapping the impact of terrain on lightningincidence and multiple ground contacts in cloud-to-ground flashes[C]//Proc 15th Int Conf on Atmosph Elec 2014: 1-16. [19] BRANDON J V, STEPHEN J H. A high-resolution lightning map of the State of Colorado[J]. Mon Wea Rev, 2014, 142(7): 2 353-2 360. [20] LOCK N A, HOUSTON A L. Spatiotemporal distribution of thunderstorm initiation in the US Great Plains from 2005 to 2007[J]. Int J Climatol, 2015, 35(13): 4 047-4 056. [21] LIU W B, LI X G. Life cycle characteristics of warm-season severe thunderstorms in central United States from 2010 to 2014[J]. J Climate, 2016, 4(3): 1-18. [22] 宋敏敏, 郑永光. 我国中东部3—9月云地闪电密度和强度分布特征[J]. 热带气象学报, 2016, 32(3): 322-333. [23] ZHENG L L, SUN J H, WEI J. Thunder events in China: 1980-2008[J]. Atmos Oceanic Sci Lett, 2010, 3(4): 181-188. [24] 王婷波, 周康辉, 郑永光. 我国中东部雷暴活动特征分析[J]. 气象, 2020, 46(2): 189-199. [25] 李家启, 申双和, 夏佰成, 等. 基于ADTD系统的闪电频次分布特征分析[J]. 热带气象学报, 2011, 27(5): 710-716. [26] 杨波, 王园香, 蔡雪薇. 我国华南江南春季雷暴气候特征分析[J]. 热带气象学报, 2019, 35(4): 470-479. [27] 王东方, 郄秀书, 袁善锋, 等. 北京地区的闪电时空分布特征及不同强度雷暴的贡献[J]. 大气科学, 2020, 44(2): 225-238. [28] 王学良, 刘学春, 黄小彦, 等. 湖北地区云地闪电时空分布特征分析[J]. 气象, 2010, 36(10): 91-96. [29] 田芳, 肖稳安, 冯民学, 等. 闪电定位仪观测结果的修订分析[J]. 华东电力, 2008, 38(6): 655-660. [30] LIU D, QIE X, XIONG Y, et al. Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing[J]. Adv Atmos Sci, 2011, 28(4): 866-878. [31] NOVÁK P, KYZNAROVÁH. Climatology of lightning in the Czech Republic[J]. Atmos Res, 2011, 100(8): 318-333. [32] WU X K, QIE X S, YUAN T. Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region[J]. Science in China Series D-Earth Sciences, 2013, 56(5): 843-854. [33] 吴翠红, 王晓玲, 龙利民, 等. 近10 a湖北省强降水时空分布特征与主要天气概念模型[J]. 暴雨灾害, 2013, 32(2): 113-119. [34] 李超, 崔春光, 蒋兴文, 等. 特殊地形对鄂东北一次局地强降水过程的作用机制分析[J]. 气象, 2018, 44(9): 1 117-1 135. [35] 徐双柱, 吴翠红, 吴涛. "2011.6. 18"湖北大暴雨成因分析[J]. 高原气象, 2013, 32(4): 1 106-1 114. [36] 张家国, 黄小彦, 周金莲, 等. 一次梅雨锋上中尺度气旋波引发的特大暴雨过程分析[J]. 气象学报, 2013, 71(2): 228-238. [37] CHRISTIAN H J, BLAKESLEE R J, BOCCIPPIO D J, et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector[J]. J Geophys Res Atmos, 2003, 108(D1), ACL 4-1-ACL 4-15. [38] YANG J, ZHAO K, CHEN X C, et al. Subseasonal and diurnal variability in lightning and storm activity over the Yangtze River Delta, China, during Mei-yu Season[J]. J Climate, 2020, 33(12): 5 013-5 033. [39] FUCHS B R, COAUTHOR S. Environmental controls on storm intensity and charge structure in multiple regions of the continental United States[J]. J Geophys Res Atmos, 2015, 120(13): 6 575-6 596. [40] WILLIAMS E, MUSHTAK V, ROSENFELD D, et al. Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate[J]. Atmos Res, 2005, 76(11): 288-306. [41] 郑栋, 张义军, 马明, 等. 大气环境层结对闪电活动影响的模拟研究[J]. 气象学报, 2007, 65(4): 622-632. [42] 徐文金, 周军, 段永明. 地形的热力作用对湖北省暴雨的影响[J]. 南京气象学院学报, 1989, 12(3): 270-276. [43] 易笑园, 张义军, 王红艳, 等. 线状中尺度对流系统内多个强降水单体的结构演变及闪电活动特征[J]. 气象学报, 2013, 71(6): 1 035-1 046. [44] 孙玉婷, 赖安伟, 王明欢, 等. 基于地形差异的闪电频数与雷达回波关系分析[J]. 高原气象, 2019, 38(6): 1 320-1 331. [45] 张廷龙, 郄秀书, 言穆弘, 等. 中国内陆高原不同海拔地区雷暴电学特征成因的初步分析[J]. 高原气象, 2009, 28(5): 1 006-1 017.