OBSERVATIONS OF RED SPRITES IN MALACCA AREA IN 2019 AND ANALYSES OF PARENT THUNDERSTORMS
-
摘要: 红色精灵是一种发生于闪电放电活跃的雷暴云上空的中高层大气瞬态发光现象, 它们通常由中尺度对流系统层状云降水区内的强地闪回击产生, 是对流层和中间层之间的一种能量耦合过程。目前, 有关中国南海及东南亚地区的红色精灵观测鲜有报道。为了进一步了解热带地区产生红色精灵事件的沿海性雷暴特征, 于2019年利用低光度光学观测系统和低频磁场天线在马来西亚马六甲地区开展了地基观测。实验于11月9日、12月11日和12月15日三次在沿海雷暴上空共捕捉到7例红色精灵事件, 其中包括4例圆柱型、2例胡萝卜型和1例舞蹈型。结合闪电定位、云顶亮温和低频磁场信号等同步数据, 分析表明所有事件均由正极性地闪回击产生, 且母体闪电回击位于雷暴对流区附近(云顶亮温≤210 K处), 这可能是该地区产生红色精灵的沿海性雷暴的共同特征。此外, 红色精灵生成期并不是闪电活动最强期, 而是发生于闪电频数短暂降低后, 这表明红色精灵的发生可能是该地区成熟雷暴中对流减弱的一个信号。Abstract: Red sprites are transient luminous events in the middle and upper atmosphere above thunderstorms with active lightning activity. As energy coupling processes between the troposphere and the mesosphere, they are usually generated by strong cloud-to-ground(CG) lightning return strokes in the stratiform cloud precipitation regions of mesoscale convective systems. At present, there are few reports on the observation of red sprites in the South China Sea and Southeast Asia. To further understand the characteristics of coastal thunderstorms that produce red sprite events in the tropics, we launched groundbased observations in Malacca, Malaysia in 2019 by using a low-light video camera system and a lowfrequency magnetic field antenna. The experiment captured a total of seven red sprites over three coastal thunderstorms on November 9, December 11, and December 15, including four column events, two carrot events and one dancing sprite. Combined with lightning location, cloud-top brightness temperature, lowfrequency magnetic field signal and other synchronous observational data, analysis shows that all events are induced by positive CG lightning strokes and parent lightning located near the convective regions of thunderstorms(cloud-top brightness temperature ≤210 K). This may be a common feature of coastal thunderstorms that produce red sprites in this region. Furthermore, red sprites did not appear during the period of strongest lightning activity, but rather after a brief decrease in lightning frequency, suggesting that the occurrence of red sprites is likely an indicator of weakening convection in mature thunderstorms in the region.
-
Key words:
- red sprite /
- Malacca region /
- coastal thunderstorm
-
表 1 2019年马六甲站的红色精灵观测
Number Date Time (UTC) Longitude Latitude Event type Storm type Distance to the station (km) Polarity event-1 2019/11/09 16:58:06.411 102.220 °E 0.481 °N carrot MCS 203 positive event-2 2019/11/09 17:22:53.502 102.351 °E 0.127 °N carrot MCS 242 positive event-3 2019/12/11 11:45:55.372 100.815 °E 3.775 °N column supercell 233 positive event-4 2019/12/11 12:00:40.659 100.821 °E 3.838 °N dancing supercell 238 positive event-5 2019/12/11 12:05:57.887 100.704 °E 3.752 °N column supercell 241 positive event-6 2019/12/11 12:09:53.719 100.749 °E 3.793 °N column supercell 240 positive event-7 2019/12/15 17:06:22.534 104.395 °E 2.673 °N carrot MCS 234 positive (GLD360) -
[1] SENTMAN D D, WESCOTT E M, OSBORNE D L, et al. Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites[J]. Geophys Res Letters, 1995, 22(10): 1 205-1 208. [2] STANLEY M, KREHBIEL P, BROOK M, et al. High speed video of initial sprite development[J]. Geophys Res Letters, 1999, 26(20): 3 201-3 204. [3] PASKO V P, INAN U S, BELL TF, et al. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere[J]. J Geophys Res: Space Physics, 1997, 102(A3): 4 529-4 561. [4] SENTMAN D D, WESCOTT E M, PICARD R H, et al. Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 537-550. [5] LIU N, DWYER J R, STENBAEK-NIELSEN H C, et al. Sprite streamer initiation from natural mesospheric structures[J]. Nature Communications, 2015, 6(1): 7 540. [6] SÃO SABBAS F T, SENTMAN D D, WESCOTT E M, et al. Statistical analysis of space-time relationships between sprites and lightning[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 525-535. [7] LU G, CUMMER S A, LI J, et al. Coordinated observations of sprites and in-cloud lightning flash structure[J]. J Geophys Res: Atmos, 2013, 118(12): 6 607-6 632. [8] SOULA S, DEFER E, FÜLLEKRUG M, et al. Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign[J]. J Geophys Res: Atmos, 2015, 120(22): 11 552-11 574. [9] BOCCIPPIO D J, WILLIAMS E R, HECKMAN S J, et al. Sprites, ELF Transients, and Positive Ground Strokes[J]. Science, 1995, 269(5227): 1 088-1 091. [10] LYONS W A. Sprite observations above the U. S. High Plains in relation to their parent thunderstorm systems[J]. J Geophys Res: Atmos, 1996, 101(D23): 29 641-29 652. [11] LYONS W A, NELSON T E, WILLIAMS E R, et al. Characteristics of sprite-producing positive cloud-to-ground lightning during the 19July 2000 STEPS mesoscale convective systems[J]. Mon Wea Rev, 2003, 131(10): 2 417-2 427. [12] LYONS W A. The meteorology of transient luminous events-an introduction and overview[M]. Dordrecht: Springer Netherlands, 2006: 19-56. [13] SOULA S, VAN DER VELDE O, MONTANYÀJ, et al. Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies[J]. Atmos Res, 2009, 91(2): 514-528. [14] HUANG E, WILLIAMS E, BOLDI R, et al. Criteria for sprites and elves based on Schumann resonance observations[J]. J Geophys Res: Atmos, 1999, 104(D14): 16 943-16 964. [15] HU W, CUMMER SA, LYONS WA, et al. Lightning charge moment changes for the initiation of sprites[J]. Geophys Res Lett, 2002, 29(8): 120-1-120-4. [16] CUMMER S A, LYONS W A. Implications of lightning charge moment changes for sprite initiation[J]. Geophys Res Lett, 2005, 110(A4). [17] HIRAKI Y, FUKUNISHI H. Theoretical criterion of charge moment change by lightning for initiation of sprites[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A11). [18] QIN J, CELESTIN S, PASKO V P. Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites[J]. Geophy Res Lett, 2012, 39(22). [19] LU G, CUMMER S A, LI J, et al. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system[J]. Geophy Res Lett, 2009, 36(15). [20] LANG T J, LYONS W A, RUTLEDGE S A, et al. Transient luminous events above two mesoscale convective systems: Storm structure and evolution[J]. Geophys Res Lett, 2010, 115(A5). [21] VAN DER VELDE O A, MONTANYÀJ, SOULA S, et al. Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain[J]. Geophys Res Lett, 2010, 115(A9). [22] VAN DER VELDE O A, MONTANYÀJ, SOULA S, et al. Bidirectional leader development in sprite-producing positive cloud-to-ground flashes: Origins and characteristics of positive and negative leaders[J]. Geophys Res Lett, 2014, 119(22): 12 755-12 779. [23] YANG J, LIU N, SATO M, et al. Characteristics of Thunderstorm Structure and Lightning Activity Causing Negative and Positive Sprites[J]. Geophys Res Lett, 2018, 123(15): 8 190-8 207. [24] HARDMAN S F, DOWDEN R L, BRUNDELL J B, et al. Sprite observations in the Northern Territory of Australia[J]. J Geophy Res: Atmos, 2000, 105(D4): 4 689-4 697. [25] YANG J, LU, G LIU N, et al. Sprite possibly produced by two distinct positive cloud-to-ground lightning flashes[J]. Terr Atmos Ocean Sci, 2017, 28(4). [26] CHERN J L, HSU R R, SU H T, et al. Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 647-659. [27] CHEN A B, KUO C L, LEE Y J, et al. Global distributions and occurrence rates of transient luminous events[J]. Geophys Res Lett, 2008, 113(A8). [28] CHEN A B, CHEN H, CHUANG C W, et al. On negative Sprites and the Polarity Paradox[J]. Geophysical Research Letters, 2019, 46(16): 9, 370-9, 378. [29] CHERN R J S, LIN S F, WU A M. Ten-year transient luminous events and Earth observations of FORMOSAT-2[J]. Acta Astronautica, 2015, 112: 37-47. [30] LU G, CUMMER S A, CHEN A B, et al. Analysis of lightning strokes associated with sprites observed by ISUAL in the vicinity of North America[J]. Terr Atmos Ocean Sci, 2017, 28(4): 583-595. [31] SAID R K, COHEN M B, INAN U S. Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations[J]. Geophys Res Lett, 2013, 118(13): 6 905-6 915. [32] FREY H U, MENDE S B, HARRIS S E, et al. The Imager for Sprites and Upper Atmospheric Lightning(ISUAL)[J]. Geophys Res Lett, 2016, 121(8): 8 134-8 145. [33] ABARCA S F, CORBOSIERO K L, GALARNEAU JR T J. An evaluation of the Worldwide Lightning Location Network(WWLLN)using the National Lightning Detection Network(NLDN)as ground truth[J]. Geophys Res Lett, 2010, 115(D18). [34] LYONS W A, CUMMER S A, STANLEY MA, et al. Supercells and sprites[J]. Bull Ameri Meteor Soci, 2008, 89(8): 1 165-1 174. [35] 王志超, 杨静, 陆高鹏, 等. 华北地区一次中尺度对流系统上方的sprite放电现象及其对应的雷达回波和闪电特征[J]. 大气科学, 2015, 39(4): 839-848. [36] YANG J, YANG M, LIU C, et al. Case studies of sprite-producing and non-sprite-producing summer thunderstorms[J]. Adv Atmos Sci, 2013, 30(6): 1 786-1 808. [37] YANG J, LU G, LIU N, et al. Analysis of a mesoscale convective system that produced a single sprite[J]. Adv Atmos Sci, 2017, 34(2): 258-271. [38] WESCOTT E M, SENTMAN D D, HEAVNER M J, et al. Observations of'Columniform'sprites[J]. Journal of Atmospheric and Solar Terrestrial Physics, 1998, 60(7): 733-740. [39] BARRINGTON-LEIGH C P, INAN U S, STANLEY M. Identification of sprites and elves with intensified video and broadband array photometry[J]. J Geophy Res: Space Physics, 2001, 106(A2): 1 741-1 750. [40] QIN J, CELESTIN S, PASKO V P. On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity[J]. J Geophy Res: Space Physics, 2011, 116(A6). [41] TAKAHASHI Y, MIYASATO R, ADACHI T, et al. Activities of sprites and elves in the winter season, Japan[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(5): 551-560. [42] SUZUKI T, MATSUDO Y, ASANO T, et al. Meteorological and electrical aspects of several winter thunderstorms with sprites in the Hokuriku area of Japan[J]. J Geophy Res: Atmos, 2011, 116(D6). [43] WESCOTT E M, STENBAEK-NIELSEN H C, SENTMAN D D, et al. Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors[J]. Geophys Res Lett, 2001, 106(A6): 10 467-10 477. [44] LANG T J, CUMMER S A, RUTLEDGE S A, et al. The meteorology of negative cloud-to-ground lightning strokes with large charge moment changes: Implications for negative sprites[J]. J Geophy Res: Atmospheres, 2013, 118(14): 7, 886-7, 896. [45] BOGGS L D, LIU N, SPLITT M, et al. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures[J]. J Geophy Res: Atmos, 2016, 121(2): 759-784. [46] LANG T J, LYONS W A, CUMMER S A, et al. Observations of two sprite-producing storms in Colorado[J]. J Geophys Res: Atmos, 2016, 121(16): 9, 675-9, 695. [47] WILLIAMS E, MUSHTAK V, ROSENFELD D, et al. Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate[J]. Atmos Res, 2005, 76(1): 288-306. [48] FUCHS B R, RUTLEDGE S A, BRUNING E C, et al. Environmental controls on storm intensity and charge structure in multiple regions of the continental United States[J]. J Geophy Res: Atmos, 2015, 120(13): 6 575-6 596. [49] LANG T J, RUTLEDGE S A. A framework for the statistical analysis of large radar and lightning datasets: results from STEPS 2000[J]. Mon Wea Rev, 2011, 139(8): 2 536-2 551. [50] SAUNDERS C P R, PECK S L. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions[J]. J Geophy Res: Atmospheres, 1998, 103(D12): 13 949-13 956. [51] BRUNING E C, WEISS S A, CALHOUN K M. Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology[J]. Atmos Res, 2014, 135-136: 274-284.