COMPARATIVE ANALYSIS OF CLOUD-TO-GROUND LIGHTNING DETECTION BY TWO LIGHTNING LOCATION SYSTEMS IN GUANGDONG-HONG KONGMACAO GREATER BAY AREA
-
摘要: 根据2014—2018年粤港澳闪电定位系统(GHMLLS)和广东电网地闪定位系统(GDLLS)两套闪电定位系统的观测资料, 对粤港澳大湾区范围内二者的地闪探测性能进行评估和对比, 结果表明, 在粤港澳大湾区, 对于地闪回击记录, 从各月份记录和空间密度的分布上来看, GDLLS的探测数都多于GHMLLS, 二者的比值为1.24;两套系统总回击、负回击、正回击的月分布和日变化特征基本一致; 两系统地闪回击的匹配记录在大湾区大部分区域内的偏差量都在1.5 km内; 对于匹配后的负、正回击电流峰值, 二者有较强的相关性, 相关系数分别为0.99和0.98, GDLLS的负、正回击电流峰值分别为GHMLLS的1.47倍和1.45倍。Abstract: Based on the observational data from the Guangdong-Hong Kong-Macau Lightning Location System(GHMLLS) and the Guangdong Lightning Location System(GDLLS) during 2014—2018, the present study evaluated and compared the two systems in cloud-to-ground(CG) lightning detection in the Guangdong-Hong Kong-Macao Greater Bay Area(GBA). The results are as follows. In the GBA, the value reported by GDLLS is more than that reported by GHMLLS in terms of monthly records and spatial density distribution, and the ratio of the two is 1.24. The monthly distribution and diurnal variation characteristics of total return strokes, negative return strokes and positive return strokes are basically the same. The positioning deviation of the two systems in most areas of the GBA is within 1.5 km. Strong correlations are obtained for the peak current of negative and positive return strokes after matching, and the correlation coefficients are 0.99 and 0.98, respectively. The peak current of negative and positive return strokes reported by GDLLS is 1.47 times and 1.45 times those reported by GHMLLS, respectively.
-
表 1 2014—2018年粤港澳大湾区内GHMLLS和GDLLS探测的记录数对比
年份 GHMLLS总记录数 GHMLLS地闪回击记录数
(占总记录百分比)GDLLS总记录数 GDLLS地闪回击记录数
(占总记录百分比)2014 4 821 996 1 836 449 (38%) 2 517 753 2 192 142 (87%) 2015 3 699 922 1 299 776 (35%) 1 693 271 1 506 941 (89%) 2016 3 118 528 1 136 828 (36%) 1 627 721 1 541 683 (95%) 2017 2 608 867 877 307 (34%) 1 032 556 1 021 310 (99%) 2018 2 759 080 806 318 (29%) 1 213 844 1 116 873 (92%) 平均值 3 401 679 1 191 336 (35%) 1 617 029 1 475 790 (91%) 表 2 2014—2018年粤港澳大湾区内GHMLLS和GDLLS探测的回击数和匹配回击数
年份 GHMLLS回击数
(匹配比例)GDLLS回击数
(匹配比例)匹配回击数 2014 1 836 449 (68%) 2 192 142 (57%) 1 257 672 2015 1 299 776 (64%) 1 506 941 (55%) 826 427 2016 1 136 828 (67%) 1 541 683 (50%) 765 316 2017 877 307 (62%) 1 021 310 (54%) 547 090 2018 806 318 (72%) 1 116 873 (52%) 584 064 平均值 1 191 336 (67%) 1 475 790 (54%) 796 114 -
[1] 郄秀书, 张其林, 袁铁, 等. 雷电物理学[M]. 北京: 科学出版社, 2013. [2] 林建, 曲晓波. 中国雷电事件的时空分布特征[J]. 气象, 2008, 34(11): 22-30. [3] 郑栋, 但建茹, 张义军, 等. 我国地闪活动和降水关系的区域差异[J]. 热带气象学报, 2012, 28(4): 569-576. [4] 王延东, 周筠珺, 王喜阳, 等. 闪电资料在中尺度WRF模式中同化方法的研究[J]. 热带气象学报, 2014, 30(2): 281-292. [5] 宋敏敏, 郑永光. 我国中东部3—9月云-地闪电密度和强度分布特征[J]. 热带气象学报, 2016, 32(3): 322-333. [6] 郭润霞, 王迎春, 张文龙, 等. 基于VLF/LF三维闪电监测定位系统的北京闪电特征分析[J]. 热带气象学报, 2018, 34(3): 393-400. [7] 毛艳华, 荣健欣. 粤港澳大湾区的战略定位与协同发展[J]. 华南师范大学学报(社会科学版), 2018(4): 104-109. [8] 刘三梅, 贺灿花, 许锐文, 等. 广东省1999—2013年雷电活动特征的分析[J]. 广东气象, 2014, 36(6): 32-35. [9] NAG A, MURPHY M J, SCHULZ W, et al. Lightning locating systems: Insights on characteristics and validation techniques[J]. Earth and Space Science, 2015, 2(4): 65-93. [10] RICHARD E, ORVILLE J. An analytical solution to obtain the optimum source location using multiple direction finders on a spherical surface[J]. J Geophys Res, 1987, 92(D9): 10 877-10 886. [11] 陈明理, 刘欣生, 郭昌明, 等. 确定雷电定位系统场地误差的参数化方法[J]. 高原气象, 1990, 9(3): 307-319. [12] 陈明理, 刘欣生, 郭昌明. 北京地区雷电定位系统场地误差及其结构分析[J]. 气象学报, 1993, 51(1): 66-74. [13] 杨波, 邱实, 宁军, 等. 闪电定位误差及探测效率评估[J]. 解放军理工大学学报(自然科学版), 2006, 7(5): 506-510. [14] 张其林, 刘晓东, 刘明远, 等. 甘肃平凉闪电定位资料误差分析及其优化[J]. 气象科技, 2011, 39(6): 808-813. [15] 曾庆锋, 张其林, 赖鑫, 等. 深圳市闪电定位资料误差分析及其优化[J]. 气象科技, 2015, 43(3): 530-536. [16] JERAULD J, RAKOV V A, UMAN M A, et al. An evaluation of the performance characteristics of the U. S. National Lightning Detection Network in Florida using rocket-triggered lightning[J]. J Geophys Res, 2005, 110: D19106. [17] 陈绿文, 张义军, 吕伟涛, 等. 闪电定位资料与人工引雷观测结果的对比分析[J]. 高电压技术, 2009, 35(8): 1 896-1 902. [18] NAG A, MALLICK S, RAKOV V A, et al. Evaluation of U. S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004-2009[J]. J Geophys Res, 2011, 116(D2): 1-8. [19] 张义军, 杨少杰, 吕伟涛, 等. 2006—2011年广州人工触发闪电观测试验和应用[J]. 应用气象学报, 2012, 23(5): 513-522. [20] 禹继, 杨仲江, 陈绿文, 等. 粤港澳闪电定位系统探测效率及精确度评估[J]. 高原气象, 2015, 34(3): 863-869. [21] ZHANG Y, LU W, CHEN L. Performance Characteristics of the Lightning Location System of Guangdong-Hongkong-Macau after the Upgrade in 2012[C]//24th International Lightning Detection Conference, San Diego, California, USA, 2016. [22] CHEN L, ZHANG Y, LU W, et al. Performance Evaluation for a Lightning Location System Based on Observations of Artificially Triggered Lightning and Natural Lightning Flashes[J]. J Atmos Oceanic Technol, 2012, 29(12): 1 835-1 844. [23] BERGER G, PEDEBOY S. Comparison Between Real CG Flashes and CG Flashes Detected by a Lightning Detection Network[C]//International Conference on Lightning and Static Electricity(ICOLSE), Blackpool, UK, 2003. [24] SCHULZ W, DIENDORFER G, PEDEBOY S, et al. The European lightning location system EUCLID-Part1: Performance analysis and validation[J]. Natural Hazards and Earth System Sciences, 2016, 16(2): 595-605. [25] 郭宏博, 邱宗旭, 杨悦新, 等. 粤港澳闪电定位系统与深圳高塔雷电光学观测对比分析[J]. 广东气象, 2017, 39(6): 60-63. [26] 陈绿文, 吕伟涛, 张义军, 等. 粤港澳闪电定位系统对高建筑物雷电的探测[J]. 应用气象学报, 2020, 31(2): 165-174. [27] BRUNDELL J B, RODGER C J, DOWDEN R L. Validation of single-station lightning location technique[J]. Radio Science, 2002, 37(4): 12-1-12-9. [28] LAY E H, HOLZWORTH R H, RODGER C J, et al. WWLL global lightning detection system: Regional validation study in Brazil[J]. Geophys Res Lett, 2004, 31(3): 76-82. [29] ABARCA S F, CORBOSIERO K L, GALARNEAU T J. An evaluation of the Worldwide Lightning Location Network(WWLLN)using the National Lightning Detection Network(NLDN)as ground truth[J]. J Geophys Res, 2010, 115: D18. [30] POHJOLA H, MÄKELÄA. The comparison of GLD360 and EUCLID lightning location systems in Europe[J]. Atmospheric Research, 2013, 123: 117-128. [31] 邓雨荣, 李涵, 朱时阳, 等. 基于卫星资料的全球闪电定位系统探测效率评估[J]. 气象科学, 2015, 35(5): 599-604. [32] 赵伟, 姜瑜君, 童杭伟, 等. 浙江省两套闪电定位系统地闪数据对比[J]. 应用气象学报, 2015, 26(3): 354-363. [33] 李京校, 郭凤霞, 扈海波, 等. 北京及其周边地区SAFIR和ADTD闪电定位资料对比分析[J]. 高原气象, 2017, 36(4): 1 115-1 126. [34] 丁旻, 吴安坤, 刘芸. 两种闪电定位资料的对比分析[J]. 科学技术与工程, 2019, 19(27): 47-54. [35] 张华明, 钱勇, 刘恒毅, 等. 山西省两套闪电定位系统地闪监测结果对比[J]. 干旱气象, 2020, 38(2): 346-352. [36] 崔雪东, 张卫斌, 王芳. 浙江省二维和三维闪电定位系统对比分析及效能评估[J]. 科技通报, 2020, 36(7): 14-20. [37] 覃成林, 刘丽玲, 覃文昊. 粤港澳大湾区城市群发展战略思考[J]. 区域经济评论, 2017(5): 113-118. [38] CHEN S M, DU Y, FAN L M, et al. Evaluation of the Guang Dong lightning location system with transmission line fault data[J]. IEE Proceedings-science, Measurement and Technology, 2002, 149(1): 9-16. [39] CUMMINS K L, CRAMER J A, BIAGI C J, et al. The US National Lightning Detection Network: Post-upgrade status[C]//2nd Conference on Meteorological Applications of Lightning Data, American Meteorological Society, Atlanta, 2006. [40] CUMMINS K L, MURPHY M J. An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U. S. NLDN[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(3): 499-518. [41] ZHENG D, ZHANG Y, MENG Q, et al. Climatological comparison of small-and large-current cloud-to-ground lightning flashes over Southern China[J]. J Climate, 2016, 29(8): 2 831-2 848.