NUMERICAL SIMULATION OF EFFECTS OF HETEROGENEOUS NUCLEATION ON MICROPHYSICAL PROCESS AND ELECTRIFICATION IN THUNDERSTORMS
-
摘要: 引入一种新型冰晶异质核化方案, 基于二维雷暴云模式, 探讨雷暴云电过程对三种异质核化的响应。结果表明: 浸润核化是冰晶生成的最重要异质核化过程, 较高数浓度的冰晶消耗雷暴云内液态水含量, 抑制淞附过程, 导致霰粒子比含水量低, 表现为较强的负极性非感应起电率; 接触核化生成的冰晶量最少, 仅对雷暴云中下层3~5 km处的冰晶有贡献, 同时霰粒子数浓度较低, 导致该方案下的起电过程最弱; 沉积核化主要影响云砧处的冰晶, 有利于提高霰收集云滴的效率, 表现为极高的霰比含水量, 促进低温区非感应起电过程的发生。总体上来看, 三个方案下的电荷结构均由较复杂的多极性发展为偶极性。其中浸润方案中主正电荷区的抬升最明显, 而接触方案过低的冰晶分布高度与沉积方案过高的冰晶分布高度, 都直接导致了次正电荷区更快消散。Abstract: A two-dimensional cumulus model with electrification and lightning process was carried out to investigate the effect of heterogeneous nucleation on microphysical process, electrification and charge structure in thunderstorms. Simulation showed that immersion freezing played a leading role. The high content of ice crystals consumed cloud water, inhibited the growth of graupel, so the mixing ratio of graupel was low and the non-inductive electric rate was the highest. The contact case showed the least amount of ice crystals, which contributed to the middle and lower layers of thunderstorm clouds and low non-inductive charging rate. Besides, the deposition freezing mainly affected the ice crystals at cloud top.In this way, the process of graupel collecting cloud droplets can be more efficient, which resulted in a high mixing ratio of graupel. The charge structure of all cases developed from multipole to dipole, and the secondary positive charge region disappeared quickly with too much or less ice crystals contents at hightemperature regions.
-
表 1 接触核化参数公式
粒子类型 ac bc FINc 长石 -0.148 4 -2.715 4 0.1% 高岭石 -0.128 5 -3.679 2 0.1% 污染物颗粒 -0.264 -0.742 0.01% 伊利石 -0.812 -2.298 9 0.1% 表 2 浸润核化参数公式
粒子类型 ai bi 启动温度/℃ 最低温度/℃ FINi 长石 2.103 79 1.038 -13 -25 0.1% 高岭石 -4.616 08 0.888 1 -10 -37 0.1% 污染物颗粒 9.973 1 0.030 3 -15 -38 0.01% 伊利石 2.010 379 0.895 07 -13 -37 0.1% 表 3 沉积核化参数公式
粒子类型 ad bd 温度阈值/℃ 饱和度阈值/% 活化分数 长石 -14.584 04 0.235 76 -13 6 0.1% 生物气溶胶 -12.659 77 0.333 82 -10 3 0.1% 沙尘 -13.396 69 0.100 58 -15 11 0.1% 伊利石 -12.796 48 0.154 51 -13 6 0.1% 表 4 霰粒源汇项
源汇项 含义 最大转换率/(g/kg) 沉积核化 浸润核化 接触核化 CGA 云滴冻结成霰 1.12×10-4 0 0 CGC 霰碰并雨滴 3.90×10-2 4.95×10-2 4.11×10-2 RGC 霰碰并云滴 17.16 9.55×10-2 0.13 IGA 冰晶转化成霰 1.71×10-2 1.24×10-2 5.65×10-3 IRC 冰晶碰并雨滴 1.38×10-2 0 0 IGC 冰晶碰并霰 2.59×10-2 2.10×10-2 1.45×10-2 -
[1] HELSDON J H, WOJCIK W A, FARLEY R D. An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model[J]. J Geophys Res Atmos, 2001, 106(D1): 1 165-1 192. [2] MANSELL E R, MACGORMAN D R, ZIEGLER C L, et al. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J Geophys Res, 2005, 110(D12): 1 545-1 555. [3] EMERSIC C, HEINSELMAN P L, MACGORMAN D R, et al. Lightning activity in a Hail-Producing storm observed with phased-array radar[J]. Mon Wea Rev, 2011, 139(6): 1 809-1 825. [4] FIERRO A O, LESLIE L, MANSELL E, et al. A high-resolution simulation of microphysics and electrification in an idealized hurricanelike vortex[J]. Meteorology and Atmospheric Physics, 2007, 98(1): 13-33. [5] 苟阿宁, 高正旭, 侯静, 等. 基于雷达和微波辐射计的湖北省冷季"高架雷暴"特征分析[J]. 热带气象学报, 2020, 36(4): 528-541. [6] 甘明骏, 郭凤霞, 黎奇, 等. 广东一次飑线过程中一个雷暴单体成熟阶段的电荷结构演变特征的数值模拟[J]. 热带气象学报, 2020, 36(4): 562-576. [7] LAL D M, GHUDE S D, SINGH J, et al. Relationship between size of cloud ice and lightning in the tropics[J]. Adv Meteor, 2015, 2014(3): 1-7. [8] ZHENG D, WANG D, ZHANG Y, et al. Charge regions indicated by LMA lightning flashes in Hokuriku's winter thunderstorms[J]. J Geophy Res: Atmos, 2019, 124(13): 7 179-7 206. [9] OUYANG X, YIN Y, XIAO H, et al. Possible roles of fall speed parameters of different graupel densities on microphysics and electrification in an idealized thunderstorm[J]. Quart J R Meteor Soc, 2019, 145(723): 2 404-2 424. [10] MANSELL E R, ZIEGLER C L. Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model[J]. J Atmos Sci, 2013, 70(7): 2 032-2 050. [11] TAKAHASHI T, SUGIMOTO S, KAWANO T, et al. Riming electrification in Hokuriku winter clouds and comparison with laboratory observations[J]. J Atmos Sci, 2017, 74(2): 431-447. [12] 谭涌波, 杨忆, 师正, 等. 冰晶核化对雷暴云微物理过程和起电影响的数值模拟研究[J]. 大气科学, 2015, 39(2): 289-302. [13] 谭涌波, 马肖, 向春燕, 等. 气溶胶对雷暴云电过程影响的数值模拟研究[J]. 地球物理学报, 2017, 60(8): 3 041-3 050. [14] FIERRO A O, MANSELL E R. Relationships between electrification and storm-scale properties based on idealized simulations of an intensifying hurricane-like vortex[J]. J Atmos Sci, 2017, 75(2): 657-674. [15] 王梦旖, 谭涌波, 师正, 等. 大气冰核谱对雷暴云微物理过程及起电影响的数值模拟[J]. 高原气象, 2019, 38(3): 593-603. [16] MURRAY B J, THEODORE W, DOBBIE S, et al. Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions[J]. Nat Geosci, 2010, 3(4): 233-236. [17] DEMOTT P J, MOHLER O, STETZER O, et al. Resurgence in ice nuclei easurement research[J]. Bull Amer Meteor Soc, 2011, 92(12): 1 623-1 635. [18] SPICHTINGER P, KROMER M. Tropical tropopause ice clouds: A dynamic approach to the mystery of low crystal numbers[J]. Atmos Chem Phys, 2013, 13(10): 9 801-9 818. [19] SHI X, LIU X, ZHANG K. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model(CAM5)[J]. Atmos Chem Phys, 2015, 15(3): 1 503-15 20. [20] KUMAR V A, PANDITHURAI G, KULKARNI G, et al. Atmospheric ice nuclei concentration measurements over a high altitude-station in the Western Ghats, India[J]. Atmos Res, 2020, 1(235): 104 795. [21] PRUPPACHER H R, KLETT J D. Microphysics of cloud and precipitation[M]. New York: Springer, 1997. [22] HOFFMANN N. Experimental study on the contact freezing of supercooled micro-droplets in electrodynamic balance[D]. Thesis, University of Heidelberg, Germany, 2014. [23] DIEHL K, MITRA S K. New particle-dependent parameterizations of heterogeneous freezing processes: sensitivity studies of convective clouds with an air parcel model[J]. Atmos Chem Phys, 2015, 15(22): 12 741-12 763. [24] HIRANUMA N, MÖHLER O, YAMASHITA K, et al. Ice nucleation by cellulose and its potential contribution to ice formation in clouds[J]. Nat Geosci, 2015, 8(4): 273-277. [25] WEX H, AUGUSTIN-BAUDITZ S, BOOSE Y, et al. Intercomparing different devices for the investigation of ice nucleating particles using Snomax ® as test substance[J]. Atmos Chem Phys, 2015, 15(3): 1 463-1 485. [26] MARCOLLI C. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities[J]. Atmos Chem Phys, 2014, 14(4): 2 071-2 104. [27] VALI G, DEMOTT P J, MÖHLER O, et al. Technical Note: A proposal for ice nucleation terminology[J]. Atmos Chem Phys, 2015, 15(18): 10 263-10 270. [28] MARCOLLI C. Pre-activation of aerosol particles by ice preserved in pores[J]. Atmos Chem Phys, 2017, 17(3): 1 595-1 622. [29] KANJI Z A, WELTI A, CORBIN J C, et al. Black carbon particles do not matter for immersion mode ice nucleation[J]. Geophys Res Lett, 2020, 47(11): e2019GL086764. [30] FLETCHER N H. Physics of rain clouds[M]. Cambridge: Cambridge University Press, 1962: 386. [31] PRUPPACHER H R, KLETT J D. Microphysics of Clouds and Precipitation[M]. Berlin, Germany: Springer, 2010: 433-446. [32] PHILLIPS V T J, DEMOTT P J, ANDRONACHE C. An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol[J]. J Atmos Sci, 2008, 65(9): 2 757-2 783. [33] ERVENS B, FEINGOLD G. Sensitivities of immersion freezing: Transition from classical nucleation theory to deterministic expressions[C]. American Institute of Physics, 2013. [34] DEMOTT P J, PRENNI A J, MCMEEKING G R, et al. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles[J]. Atmos Chem Phys, 2015, 15(1): 393-409. [35] DIEHL K, GRÜTZUN V. Model simulations with COSMO-SPECS: impact of heterogeneous freezing modes and ice nucleating particle types on ice formation and precipitation in a deep convective cloud[J]. Atmos Chem Phys, 2018, 18(5): 1-35. [36] 谭涌波, 陶善昌, 祝宝友, 等. 雷暴云内闪电双层、分支结构的数值模拟[J]. 中国科学(D辑), 2006, 36(5): 486-496. [37] 谭涌波. 闪电放电与雷暴云电荷、电位分布相互关系的数值模拟[D]. 合肥: 中国科技大学, 2006. [38] 谭涌波, 陶善昌, 祝宝友, 等. 雷暴云内闪电双层、分支结构的数值模拟[J]. 中国科学(地球科学), 2006, 36(5): 486-496. [39] SHI Z, TAN Y B, TANG H Q, et al. Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency[J]. Atmos Res, 2015, 164-165(1): 131-141. [40] ZIEGLER C L, MACGORMAN D R, DYE J E, et al. A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm[J]. J Geophys Res, 1991, 96(961): 12 833-12 855. [41] DIEHL K, WURZLER S. Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in the drops[J]. J Atmos Sci, 2004, 61(16): 2 063-2 072. [42] CZICZO D J, FROYD K D. Sampling the composition of cirrus ice residuals[J]. Atmos Res, 2014, 142(10): 15-31. [43] YIN Y, LEVIN Z, REISIN T G, et al. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds-A numerical study[J]. Atmos Res, 2000, 53(1-3): 91-116. [44] HANDE L B, HOOSE C, BARTHLOTT C. Aerosol-and droplet-dependent contact freezing: Parameterization development and case study[J]. Atmos Sci, 2017, 74(7): 2 229-2 245. [45] KNOPF D A, ALPERT P A, ZIPORI A, et al. Stochastic nucleation processes and substrate abundance explain time-dependent freezing in supercooled droplets[J]. Climate Atmos Sci, 2020, 3(1): 1-9.