SIMULATION STUDY OF CHARACTERISTICS AND CAUSES OF CHARGE STRUCTURE IN RAINSTORM DOMINATED BY WARM CLOUD PRECIPITATION
-
摘要: 为了认识以暖云强降水为主导的对流单体中的电荷结构特征及其形成原因, 利用加入了起放电参数化方案的WRF模式, 模拟了2017年5月7日广州局地突发的以暖云降水为主导的特大暴雨过程, 分析讨论了此次过程中一个单体成熟发展阶段的电荷结构的特征及其成因。结果表明, 此次以暖云降水为主导的特大暴雨过程中的单体对流强度较弱, 云顶高度低于同地区典型对流过程, 强回波区由大雨滴形成, 范围较小, 顶较低, 对流运动向0℃层以上输送的过冷水较少, 不利于冰相粒子形成, 导致大小冰相粒子含量均较少, 其中含量最多的冰相粒子为雪花, 其次依次为霰、冰晶、冰雹。云内起电较弱, 以非感应起电为主。非感应起电主要以对流区中-15℃层以下正的起电率为主, 感应起电率以对流区中的负极性为主。对流区中空间净电荷呈三极性结构, 其中中部负电荷区和底部正电荷区中心电荷密度及电荷区范围相当, 上部正电荷区相对较弱, 范围较小。对流区外围仅有弱的中部负电荷区和底部正电荷区。中部负电荷区由带负电荷的冰晶和雪花共同主导, 上部正电荷区由带正电荷的雪花主导, 底部正电荷区主要是由带正电荷的霰粒子及带正电荷的雨滴主导。强起电区和放电区重合, 主要集中在回波中心上部35~50 dBZ的对流区。Abstract: In order to understand the characteristics and causes of charge structure in convective cells dominated by warm cloud precipitation, WRF model with electrification and discharge parameterization scheme is used in this study to simulate the sudden rainstorm dominated by warm cloud precipitation in Guangzhou on May 7, 2017, and analyze the characteristics and causes of charge structure of a monomer in this process. The results show that the height of the cloud top during the extreme rainstorm dominated by warm cloud precipitation is lower than that in a typical convective process in the same area, and the convection intensity is weaker. The strong echo area consists of heavy raindrops, with a smaller range and a lower top. There is less supercooled water transported above the 0 ℃ layer, which is not conducive to the formation of ice phase particles. Therefore, in the monomer maturation stage, the proportion of small and large ice particles is small, among which most are snowflakes, followed by graupels, ice crystals, and hail. The electrification in the cloud is weak with non-inductive electrification as the dominant. The noninductive electrification is mainly positive below-15 ℃ in the convection zone, and the inductive electrification shows negative polarity in the convection zone. The net space charge in the convection zone has a tripolar structure. The density and range of charge in the middle negatively charged region and the positively charged region at the bottom are similar; the main positively charged region is relatively weak with a small range. There is only a weak negatively charged zone in the middle and a positively charged region at the bottom of the periphery of the convection zone. The middle negatively charged region is dominated by negatively charged ice crystals and snowflakes, the upper positively charged region is dominated by positively charged snowflakes, and the positively charged region at them bottom is mainly dominated by positively charged graupel particles and positively charged raindrops. The strong electrification zone and the discharge zone overlap, mainly concentrated in the convection zone of 35—50 dBZ above the echo center.
-
Key words:
- warm cloud precipitation /
- rainstorm /
- WRF /
- hydrometeor /
- charge structure
-
图 6 沿图 4b黑线所示的剖面上各水成物粒子比含水量(彩色阴影)、反射率因子(黑色等值线,由外到内数值分别为35、40、45、50、55、60 d BZ)、风速(水平与垂直风速的叠加,矢量箭头)、黑色虚线为等温线(从下往上分别为0、-10、-20、-40℃)、数浓度(蓝色等值线;霰:103·kg-1,冰晶:107·kg-1,雪:105·kg-1,雹:101·kg-1,云水:108·kg-1,雨:104·kg-1)a.霰;b.冰晶;c.雪;d.雹;e.云水;f.雨。
图 7 沿图 4b黑线所示的剖面上各水成物粒子空间电荷混合比(彩色阴影)与净电荷垂直分布(黑色等值线,单位为nC·m3,实线为正,虚线为负)、黑色虚线为等温线(从下往上分别为0℃,-10℃,-20℃,-40℃)a.霰;b.冰晶;c.雪;d.雹;e.云水;f.雨。
图 8 沿图 4b黑线所示的剖面上感应起电率(等值线,实线为正,虚线为负)与非感应起电率(彩色阴影图)叠加图(a)和净电荷垂直分布(彩色阴影图)、闪电起始点(黑色圆点)与反射率因子(蓝色等值线)叠加图(b)
黑色虚线为等温线,从下往上分别为0℃,-10℃,-20℃。
-
[1] 傅佩玲, 胡东明, 张羽, 等. 2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析[J]. 气象, 2018, 44(4): 500-510. [2] 徐珺, 毕宝贵, 谌芸, 等. "5.7"广州局地突发特大暴雨中尺度特征及成因分析[J]. 气象学报, 2018, 76(4): 21-34. [3] 伍志方, 蔡景就, 林良勋, 等. 2017年广州"5·7"暖区特大暴雨的中尺度系统和可预报性[J]. 气象, 2018, 44(4): 19-33. [4] 田付友, 郑永光, 张小玲, 等. 2017年5月7日广州极端强降水对流系统结构、触发和维持机制[J]. 气象, 2018, 44(4): 3-18. [5] LIU Z, ZHENG D, GUO F, et al. Lightning activity and its associations with cloud structures in a rainstorm dominated by warm precipitation[J]. Atmospheric Research, 2020: 105120. [6] 张义军, 刘欣生, 肖庆复. 国南北方雷暴及人工触发闪电特性的对比分析[J]. 高原气象, 1997, 16(2): 113-121. [7] LIU X, YE Z, SHAO X, et al. Intracloud lightning discharges in the lower part of thundercloud[J]. J Meteor Res, 1989, 3(2): 212-219. [8] HOLDEN D N, HOLMES C R, MOORE C B, et al. Local charge concentrations in thunderclouds[C]//Proceedings in Atmospheric Electricity. Hampton, Va. : A. Deepak, 1983: 179-183. [9] 张义军, 吕伟涛, 陈绍东, 等. 广东野外雷电综合观测试验十年进展[J]. 气象学报, 2016, 74(5): 655-671. [10] 颜旭, 张义军, 杜赛, 等. 触发闪电产生的地网地电位抬升及暂态效应[J]. 应用气象学报, 2020, 31(2): 247-256. [11] 史东东, 郑栋, 张阳, 等. 低频电场变化探测阵列建设及其初步运行结果[J]. 中国科学: 地球科学, 2018, 48(1): 113-126. [12] 张敏锋, 刘欣生, 张义军, 等. 广东地区雷电活动的气候分布特征[J]. 热带气象学报, 2000, 16(1): 46-53. [13] 董万胜, 刘欣生, 张义军, 等. 云闪放电通道发展及其辐射特征[J]. 高原气象, 2003, 22(3): 221-225. [14] ZHENG D, SHI D, ZHANG Y, et al. Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions[J]. J Geophy Res, 2019, 124(14): 8 025-8 042. [15] 郭凤霞, 黄兆楚, 王曼霏, 等. 广东一次雷暴过程的宏微观及电特征的数值模拟[J]. 热带气象学报, 2018, 34(5): 626-636. [16] 甘明骏, 郭凤霞, 黎奇, 等. 广东一次飑线过程中一个雷暴单体成熟阶段的电荷结构演变特征的数值模拟[J]. 热带气象学报, 2020, 36(4): 562-576. [17] 曾智琳, 谌芸, 朱克云, 等. 2017年"5.7"广州特大暴雨的中尺度特征分析与成因初探[J]. 热带气象学报, 2018, 34(6): 73-87. [18] HELSDON JR J H, WOJCIK W A, FARLEY R D. An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model[J]. J Geophy Res, 2001, 106(D1): 1 165-1 192. [19] SAUNDERS C P R, KEITH W D, MITZEVA R P. The effect of liquid water on thunderstorm charging[J]. J Geophy Res, 1991, 96(D6): 11 007-11 017. [20] ZIEGLER C L, MACGORMAN D R, DYE J E, et al. A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm[J]. J Geophy Res, 1991, 96(D7): 12 833-12 855. [21] MACGORMAN D R, STRAKA J M, ZIEGLER C L. A lightning parameterization for numerical cloud models[J]. J Applied Meteor, 2001, 40(3): 459-478. [22] MANSELL E R, ZIEGLER C L, BRUNING E C. Simulated Electrification of a Small Thunderstorm with Two-Moment Bulk Microphysics[J]. J Atmos Sci, 2010, 67: 171-194. [23] ZIEGLER C L. Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing[J]. J Atmos Sci, 1985, 42: 1 487-1 509. [24] 郑栋, 张义军, 孟青, 等. 一次雹暴的闪电特征和电荷结构演变研究[J]. 气象学报, 2010, 68(2): 248-263. [25] 曾凡辉, 郭凤霞, 廉纯皓, 等. 中国内陆高原雷暴云底部正电荷区的形成机制[J]. 科学技术与工程, 2019, 19(2): 25-33. [26] 郭凤霞, 王曼霏, 黄兆楚, 等. 青藏高原雷暴电荷结构特征及成因的数值模拟研究[J]. 高原气象, 2018, 37(4): 911-922. [27] 王鹏云, 阮征, 康红文. 华南暴雨中云物理过程的数值研究[J]. 应用气象学报, 2002, 13(1): 78-87. [28] 陈哲彰. 冰雹与雷暴大风的云对地闪电特征[J]. 气象学报, 1995(3): 367-374. [29] 王婷波, 郑栋, 周康辉, 等. 暴雨和雹暴个例中闪电特征对比[J]. 应用气象学报, 2017, 28(5): 568-578.