ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降水条件下的云雷达与微波辐射计反演液态水含量对比分析

邹明龙 刘黎平 郑佳锋 曾震瑜 李博勇

邹明龙, 刘黎平, 郑佳锋, 曾震瑜, 李博勇. 降水条件下的云雷达与微波辐射计反演液态水含量对比分析[J]. 热带气象学报, 2021, 37(4): 669-680. doi: 10.16032/j.issn.1004-4965.2021.063
引用本文: 邹明龙, 刘黎平, 郑佳锋, 曾震瑜, 李博勇. 降水条件下的云雷达与微波辐射计反演液态水含量对比分析[J]. 热带气象学报, 2021, 37(4): 669-680. doi: 10.16032/j.issn.1004-4965.2021.063
ZOU Ming-long, LIU Li-ping, ZHENG Jia-feng, CENG Zhen-yu, LI Bo-yong. COMPARATIVE ANALYSIS OF LIQUID WATER CONTENT RETRIEVED BY CLOUD RADAR AND MICROWAVE RADIOMETER DURING PRECIPITATION EVENTS[J]. Journal of Tropical Meteorology, 2021, 37(4): 669-680. doi: 10.16032/j.issn.1004-4965.2021.063
Citation: ZOU Ming-long, LIU Li-ping, ZHENG Jia-feng, CENG Zhen-yu, LI Bo-yong. COMPARATIVE ANALYSIS OF LIQUID WATER CONTENT RETRIEVED BY CLOUD RADAR AND MICROWAVE RADIOMETER DURING PRECIPITATION EVENTS[J]. Journal of Tropical Meteorology, 2021, 37(4): 669-680. doi: 10.16032/j.issn.1004-4965.2021.063

降水条件下的云雷达与微波辐射计反演液态水含量对比分析

doi: 10.16032/j.issn.1004-4965.2021.063
基金项目: 

国家自然科学基金项目 41875036

详细信息
    通讯作者:

    刘黎平, 男, 河北省人, 研究员, 主要从事雷达气象方向的研究。E-mail: liulp@cma.gov.cn

  • 中图分类号: P426

COMPARATIVE ANALYSIS OF LIQUID WATER CONTENT RETRIEVED BY CLOUD RADAR AND MICROWAVE RADIOMETER DURING PRECIPITATION EVENTS

  • 摘要: 为了发展云雷达与微波辐射计联合反演液态水含量的方法, 利用2019年4—9月中国气象科学研究院在广东龙门开展的综合观测试验中的双波段云雷达和微波辐射计数据, 首先检验了在降水条件下微波辐射计天顶观测和斜路径观测两种探测模式反演温度(T)、相对湿度(RH)、液态水含量(LWC)和液态水路径(LWP)的合理性, 然后分析了两种探测设备反演LWC和LWP的差别。得到以下结论: (1)微波辐射计在斜路径观测模式下反演的产品受降水影响较小, 其反演结果明显优于天顶观测模式; (2)两种探测设备反演的LWP相关性较好且随时间变化较为一致, 但云雷达反演LWP与平均回波强度有明显相关, 随着雷达回波强度的增大, 云雷达与微波辐射计反演的LWP之比越大; (3)两种探测设备反演的LWC相关性较差且存在明显偏差, 在不考虑融化层的情况下单波段云雷达反演LWC与微波辐射计随高度变化趋势相近, 双波段云雷达反演LWC与微波辐射计反演结果在1 km及其以上区间存在明显差异。

     

  • 图  1  微波辐射计两种探测模式反演产品对比

    a.Ku波段云雷达回波强度、LWP和ZH; b.斜路径观测的LWC、ILWC和ZH; c.同b,但为天顶观测;d.斜路径观测的RH; e.天顶观测的RH; f.龙门站地面分钟雨强。

    图  2  2019年5月8日07:15(a、d)、13:15(b、e)和19:15(c、f)L波段探空与微波辐射计反演的温度(a~c)和相对湿度(d~f)

    CC1和CC2分别表示斜路径和天顶观测与探空的相关系数;Bias1和Bias2表示与探空的偏差。

    图  3  2019年5月8日两种探测设备反演LWP随时间变化趋势

    a.云雷达反射率因子;b.云雷达和微波辐射计反演的LWP。

    图  4  两种探测设备反演LWP之比与平均回波强度的关系

    a.云雷达与微波辐射计斜路径观测比值;b.云雷达与微波辐射计天顶观测比值。

    图  5  不同高度层CR LWC与MWR LWC的散点图、相关系数(CC)和偏差(Bias)

    a、d.雨水层;b、e.云水层;c、f.过冷水层。a~c填色代表散点密度;e~f填色代表回波强度。

    图  6  两种探测设备反演的LWC廓线

    表  1  Ka/Ku双波段云雷达技术指标

    雷达指标 详细参数
    雷达体制 双波段、脉冲多普勒、全相参、全固态、线性极化
    工作频率 33.44 GHZ(Ka)、13.6 GHZ(Ku)
    探测要素 反射率因子、径向速度、速度谱宽、
    退极化比、功率谱密度
    探测能力 ≤-30 dBZ@5 km(Ka)
    ≤-20 dBZ@5 km(Ku)
    探测范围 高度:120 m ~ 15 km
    回波强度:-50 dBZ ~ +30 dBZ
    径向速度:-20 m/s ~ +20 m/s
    速度谱宽:0 m/s ~ 4 m/s
    探测精度 时间分辨率:6 s (可调)
    空间分辨率:30 m
    回波强度:≤ 1 dBZ(RMS)
    径向速度:≤ 1 m/s(RMS)
    速度谱宽:≤ 1 m/s
    下载: 导出CSV

    表  2  具有代表性的LWC-Z经验关系式

    作者 经验关系 观测对象
    Atlas[3] LWC = 4.654∙Z0.5 非降水云
    Sauvageot等[5] LWC = 14.54∙Z0.76 非降水云
    Fox等[4] LWC = 9.27∙Z0.641 非降水云
    Baedi等[6] LWC = 0.457∙Z0.19 毛毛雨
    Krasnov等[7] LWC = 0.025 8∙Z0.633 小雨
    刘黎平等[8] LWC = 0.012 89∙Z0.559 小雨
    下载: 导出CSV

    表  3  LWC分布随温度的变化情况

    温度(T 液态水含量(LWC)
    T > 0 ℃ LWC2 = LWC1
    -16 ℃ ≤ T ≤ 0 ℃ ${\rm{LW}}{{\rm{C}}_2} = {\rm{ LW}}{{\rm{C}}_1} \cdot \frac{{T - {T_{ - 16{\rm{℃}}}}}}{{{T_{0℃}} - {T_{ - 16{\rm{℃}}}}}}$
    T < -16 ℃ LWC2 = 0
        注:LWC1、LWC2分别表示剔除冰相粒子前后的液态水含量。
    下载: 导出CSV

    表  4  CR LWP与MWR LWP的相关系数(CC)和偏差(Bias)

    CR LWP Off-Zenith Zenith
    CC Bias/mm CC Bias/mm
    Baedi[6] 0.645 0.722 0.660 0.036
    Krasnov[7] 0.713 -0.980 0.787 -1.666
    Liu[8] 0.722 -1.599 0.785 -2.286
    下载: 导出CSV
  • [1] 汪宏七, 赵高祥. 云和辐射——(Ⅰ)云气侯学和云的辐射作用[J]. 大气科学, 1994(S1): 910-921.
    [2] 仲凌志, 刘黎平, 葛润生. 毫米波测云雷达的特点及其研究现状与展望[J]. 地球科学进展, 2009, 24(4): 383-391. doi: 10.3321/j.issn:1001-8166.2009.04.004
    [3] ATLAS D. The estimation of cloud parameters by radar[J]. Journal of Atmospheric Sciences, 1954, 11(4): 309-317.
    [4] FOX N I, ILLINGWORTH A J. The retrieval of stratocumulus cloud properties by ground-based cloud radar[J]. J Appl Meteor, 1997, 36(5): 485-492. doi: 10.1175/1520-0450(1997)036<0485:TROSCP>2.0.CO;2
    [5] SAUVAGEOT H, OMAR J. Radar reflectivity of cumulus clouds[J]. J Atmos Oceanic Technol, 1987, 4(2): 264-272. doi: 10.1175/1520-0426(1987)004<0264:RROCC>2.0.CO;2
    [6] BAEDI R J P, DE WIT J J M, RUSSCHENBERG H W J, et al. Estimating effective radius and liquid water content from radar and lidar based on the CLARE98 data-set[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(10-12): 1057-1062. doi: 10.1016/S1464-1909(00)00152-0
    [7] KRASNOV O A, RUSSCHENBERG H W J. Retrieval of water cloud microphysical parameters from simultaneous RADAR and LIDAR measurements[J]. International Unin of Radio Science, 2002, 20(3): 101-115. http://ursi.org/Proceedings/ProcGA02/papers/p1706.pdf
    [8] 刘黎平, 宗蓉, 齐彦斌, 等. 云雷达反演层状云微物理参数及其与飞机观测数据的对比[J]. 中国工程科学, 2012, 14(9): 64-71.
    [9] WARE R, CARPENTER R, GÜLDNER J, et al. A multichannel radiometric profiler of temperature, humidity, and cloud liquid[J]. Radio Science, 2003, 38(5): 1-13. http://www.rap.ucar.edu/staff/vandenb/publis/ware_rs_03.pdf
    [10] WESTWATER E R. The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry[J]. Radio Science, 1978, 13(4): 677-685. doi: 10.1029/RS013i004p00677
    [11] CADEDDU M P, GHATE V P, MECH M. Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds[J]. Atmospheric Measurement Techniques, 2020, 13(3): 1 485-1 499. doi: 10.5194/amt-13-1485-2020
    [12] 黄建平, 何敏, 阎虹如, 等. 利用地基微波辐射计反演兰州地区液态云水路径和可降水量的初步研究[J]. 大气科学, 2010, 34(3): 548-558. doi: 10.3878/j.issn.1006-9895.2010.03.08
    [13] WESTWATER E R, CREWELL S, MÄTZLER C, et al. Principles of surface-based microwave and millimeter wave radiometric remote sensing of the troposphere[J]. Quad Soc Ital Elettromagnetismo, 2005, 1(3): 50-90. http://radiometrics.com/wp-content/uploads/2012/12/Westwater_RadSciBull_04.pdf
    [14] CREWELL S, EBELL K, LÖHNERT U, et al. Can liquid water profiles be retrieved from passive microwave zenith observations?[J]. Geophys Res Lett, 2009, 36(6): L06803. http://www.onacademic.com/detail/journal_1000035649551310_40de.html
    [15] 韩珏靖, 陈飞, 张臻, 等. MP-3000A型地基微波辐射计的资料质量评估和探测特征分析[J]. 气象, 2015(2): 226-233. doi: 10.3969/j.issn.1671-6345.2015.02.011
    [16] 鲍艳松, 钱程, 闵锦忠, 等. 利用地基微波辐射计资料反演0-10km大气温湿廓线试验研究[J]. 热带气象学报, 2016, 32(2): 163-171. https://rdqxxb.itmm.org.cn/article/id/20160203
    [17] 谢慧玲, 朱克云, 张杰, 等. 地基微波辐射计资料质量定量分析[J]. 云南大学学报(自然科学版), 2018, 40(1): 94-103.
    [18] 刘晓璐, 刘东升, 郭丽君, 等. 国产MWP967KV型地基微波辐射计探测精度[J]. 应用气象学报, 2019, 30(6): 731-744.
    [19] ZHANG W, XU G, XI B, et al. Comparative study of cloud liquid water and rain liquid water obtained from microwave radiometer and micro rain radar observations over central China during the monsoon[J]. J Geophy Res: Atmospheres, 2020, 125(20): e2020JD032456. doi: 10.1029/2020JD032456
    [20] 郭丽君, 郭学良. 北京2009-2013年期间持续性大雾的类型、垂直结构及物理成因[J]. 大气科学, 2016, 40(2): 296-310.
    [21] TEMIMI M, FONSECA R M, NELLI N R, et al. On the analysis of ground-based microwave radiometer data during fog conditions[J]. Atmospheric Research, 2020, 231: 104652. doi: 10.1016/j.atmosres.2019.104652
    [22] 张文刚, 徐桂荣, 廖可文, 等. 降水对地基微波辐射计反演误差的影响[J]. 暴雨灾害, 2013, 32(1): 70-76.
    [23] WARE R, CIMINI D, HERZEGH P, et al. Ground-based microwave radiometer measurements during precipitation[C]. 8th Specialist Meeting on Microwave Radiometry. 2004: 24-27.
    [24] WARE R, CIMINI D, CAMPOS E, et al. Thermodynamic and liquid profiling during the 2010 Winter Olympics[J]. Atmospheric Research, 2013, 132: 278-290. http://www.radiometrics.com/data/uploads/2013/07/Ware_AR_131.pdf
    [25] XU G, ZHANG W, FENG G, et al. Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy[J]. Atmospheric Research, 2014, 140: 85-94. http://or.nsfc.gov.cn/bitstream/00001903-5/248544/1/1000015055798.pdf
    [26] 陈英英, 杨凡, 徐桂荣, 等. 基于雨雪天气背景的微波辐射计斜路径与天顶观测的反演结果对比分析[J]. 暴雨灾害, 2015, 34(4): 375-383. doi: 10.3969/j.issn.1004-9045.2015.04.011
    [27] 郑晨雨, 刘黎平. Ka/Ku双波段云雷达探测云降水滴谱和空气垂直运动速度的能力模拟分析[J]. 高原气象, 2020, 39(3): 543-559.
    [28] TURNER D D, CLOUGH S A, LILJEGREN J C, et al. Retrieving Liquid Water Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement(ARM)Microwave Radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3680-3690. doi: 10.1109/TGRS.2007.903703
    [29] 仲凌志. 毫米波测云雷达系统的定标和探测能力分析及其在反演云微物理参数中的初步研究[D]. 北京: 中国气象科学研究院, 2009.
    [30] 谢晓林, 刘黎平. 云雷达联合微波辐射计反演混合性降水层云液态水含量的方法研究[J]. 暴雨灾害, 2016, 35(1): 1-9. doi: 10.3969/j.issn.1004-9045.2016.01.001
    [31] DUNN M, JOHNSON K L, JENSEN M P. The Microbase value-added product: A baseline retrieval of cloud microphysical properties[C]. Atmospheric Radiation Measurement, US Department of Energy, Office of Science, DOE/SC-ARM/TR-095, 2011.
    [32] 刘黎平, 张扬, 丁晗. Ka/Ku双波段云雷达反演空气垂直运动速度和雨滴谱方法研究及初步应用[J]. 大气科学, 2021, 45(5): 1 099-1 113.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-15
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-12-15
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回