CAUSE ANALYSIS OF DISASTROUS GALE IN DOWNBURST EVENT IN JIANGSU
-
摘要: 通过天气学分析方法和雷达回波特征分析方法对发生在江苏沿淮地区一次下击暴流事件的环境条件、地面要素场特征和六次风暴单体造成的下击暴流过程进行了分析,并探讨12级致灾大风的可能成因,探寻具有较大预警提前量的下击暴流大风预警指标。结果表明:此次下击暴流事件是在具有前倾槽结构的弱风速垂直切变环境条件下由脉冲风暴等孤立对流系统的强冷性下沉气流所造成的。地面灾害性大风发生前20~40 min可在风暴单体外围识别出缓慢向外扩散的环形阵风锋,该环形阵风锋从雷暴大风预警业务角度来说可认为是下击暴流产生地面大风的“先兆信号”;风暴单体的反射率因子核、风暴质心高度以及垂直积分液态水含量(VIL)值在地面8级以上强风发生前约20 min显示出持续下降的特征。下击暴流造成的致灾大风可能是由于同时发生的两个风暴单体下击暴流辐散气流的同向叠加、强变压风、强密度流和次级环流的加强等共同作用所导致。Abstract: To explore a downburst gale early warning index with more time leading early warning, the present study analyzed the environmental conditions, ground element field characteristics and the downburst process caused by six storm cells in a downburst event along the Huaihe River in Jiangsu Province and discussed the possible causes of disastrous gale by conducting synoptic analysis and radar echo characteristic analysis. The results show that the downburst was caused by the strong cold downdraft of the isolated convective systems, such as the pulse storms, which were triggered under the condition of weak vertical wind shear with a forward-inclined trough structure. The annular gust front with slow outward diffusion could be identified at the periphery of the storm cell 20 ~ 40 minutes before the occurrence of the ground disastrous gale, which could be regarded as the precursor signal of thunderstorm winds. The reflectivity factor core, storm centroid height and vertical integrated liquid water content of storm monomer showed the characteristics of continuous decline about 20 minutes before the occurrence of strong winds. The disastrous gale may be caused by the simultaneous superposition of the downburst and divergent air flow under the two storm cells, the strong variable pressure wind, the strong density current and the strengthening of the secondary circulation.
-
表 1 2019年7月28日沿淮地区的下击暴流大风天气实况
下击暴流大风出现地点 出现时间 极大风风速/(m/s) 极大风方位(风向) 风暴单体 亭湖环保园 15:39 36.1(12级) 52 °(NE) C4 盐都盐龙街道 16:18 22.9(9级) 242 °(SW) H5 盐都北龙港 15:56 21.8(9级) 247 °(SW) H5 盐都大纵湖镇 15:51 21.2(9级) 261 °(WSW) H5 盐都龙冈镇 16:06 20.8(9级) 278 °(W) H5 宝应广洋湖镇 15:41 22.6(9级) 221 °(SW) 江都邵伯镇 16:03 21.2(9级) 217 °(SW) J6 射阳临海农场 16:20 22.6(9级) 188 °(S) 兴化周奋乡 15:46 22.3(9级) 268 °(W) E5 宝应射阳湖镇 15:42 19.4(8级) 270 °(W) 宝应黄塍新丰 15:18 19.3(8级) 208 °(SSW) 盐都北蒋街道 16:10 19.4(8级) 228 °(SW) 盐都秦南镇 15:55 18.5(8级) 281 °(W) 兴化大邹镇 15:54 15.7(7级) 243 °(WSW) N4 江都真武镇 16:23 16.4(7级) 191 °(S) 高邮周三镇 15:01 11.3(6级) 108 °(ESE) Z5 表 2 各风暴产生下击暴流时雷达回波特征属性变化时间及提前量
强阵风发生地点 发生时间 反射率因子核开始下降时间
(提前量)质心开始下降时间
(提前量)VIL开始下降时间
(提前量)阵风锋出现时间
(提前量)阵风锋移速/(m/s) 兴化周奋乡 15:46 15:20(26 min) 15:25(21 min) 15:20(26 min) 15:22(24 min) 9 盐都盐龙街道 16:18 15:40(38 min) 15:40(38 min) 15:46(32 min) 15:34(42 min) 6 盐都北龙港 15:56 15:22(34 min) 15:22(34 min) 15:28(28 min) 15:28(28 min) 6 盐都大纵湖镇 15:51 15:22(29 min) 15:22(29 min) 15:28(23 min) 15:28(23 min) 6 盐都龙冈镇 16:06 15:40(26 min) 15:40(26 min) 15:46(32 min) 15:34(42 min) 6 亭湖环保园 15:39 15:31(8 min) 不明显 15:37(2 min) 15:17(22 min) 6 -
[1] FUJITA T T. Objectives, operation, andresultsof project NIMROD//The 11th Conference on Severe Local Storms[C]. Kansas City, MO: American Meteorology Society, 1979: 259-266. [2] POTTS R. Microburst precursons observed with Doppler radar//24th Conference on Radar Meteorology[C]. American Meteorology Society, 1989: 158-162. [3] WILSON J W, SCHREIBER W E. Initiation of convective storms by radar-observed boundary layer convergence lines[J]. Mon Wea Rev, 1986, 114(10): 2 516-2 536. [4] ROBERTS R D, WILSON J W. A proposed microburst nowcasting procedure using single-Doppler radar[J]. J Appl Meteor, 1989, 28(4): 285-303. [5] EILTS M D, JOHNSON J T, MITEHELL E D, et al. Damaging downburst prediction and detection algorithm for the WSR-88D//18th Conference on Severe Local Storms[C]. San Francisco: American Meteorology Society, 1996, 541-545. [6] KESSINGER C J, PARSONS D B, WILSON J W. Observations of a storm containing misocyclones, downbursts, and horizontal vortex circulations[J]. Mon Wea Rev, 1988, 116(10): 1 959-1 982. [7] HJELMFELT M R. Strcture and life cycle of microburst out-flows observed in Colorado[J]. J Appl Meteor, 1988, 27(8): 900-927. [8] 俞小鼎, 张爱民, 郑媛媛, 等. 一次系列下击暴流事件的多普勒天气雷达分析[J]. 应用气象学报, 2006, 17(4): 385-392. [9] 石磊. 一次宏下击暴流的雷达回波特征分析[J]. 气象研究与应用, 2009, 30(3): 16-19. [10] 刁秀广, 赵振东, 高慧君, 等. 三次下击暴流雷达回波特征分析[J]. 气象, 2011, 37(5): 522-531. [11] 王楠, 刘黎平, 仲凌志. 一次下击暴流天气的多普勒雷达资料分析[J]. 南京信息工程大学学报, 2009, 1(3): 273-278. [12] 窦慧敏, 丁治英, 沈新勇, 等. 东北冷涡下一次飑线和MCV的形成与水平涡度的关系[J]. 热带气象学报, 2019, 35(5): 709-720. [13] MERRITT M W. Automated detection of microburst windshear for terminal Doppler weather radar[C]. Digital image Processing and Visual Communication Technologies in Meteorology. Cambridge, 1987: 91-102. [13] 张钢, 潘运红, 柳畅. 下击暴流区域特征提取和识别算法[J]. 计算机工程与应用, 2011, 47(28): 185-187. [14] 陶岚, 戴建华. 下击暴流自动识别算法研究[J]. 高原气象, 2011, 30(3): 784-797. [15] WOLFSON M M, DELANOY R L, FORMAN B E, et al. Automated microburst wind shear prediction[J]. Lincoln Lab J, 1994, 7(2): 399-426. [16] SMITH T M, ELMORE K L, DULIN S A. A damaging downburst prediction and detection algorithm for the WSR-88D[J]. Wea Forecasting, 2004, 19(2): 240-250.