STUDY ON DISASTER RISK OF TYPHOON LEKIMA AND BENEFIT OF CORRESPONDING METEOROLOGICAL SERVICE
-
摘要: 利用气象资料、灾情资料、浙江宁波地方经济发展数据,采用模糊算法、层次分析法等对台风“利奇马”在宁波地区的影响进行风险和灾情评估,“利奇马”灾害风险评估等级是1级、特重,实际灾损虽是50.19亿元,但灾情等级5级、较轻,实际灾损低于风险评估等级;用逆推算法计算宁波地区“利奇马”台风的气象服务效益达41.76亿元,占台风直接经济损失与气象服务效益之和的45%,服务效益显著。政府及水利部门根据气象预报做出关闸滞洪的决策部署,在保障水库和下游河道堤防安全前提下,为城乡积涝赢得了45小时的排水时间,降低平原河网水位的压力,减轻了内涝灾害;同时充足的水库蓄水,使得后期出现气象干旱时,保障了本地供水安全,气象服务在减少内涝等灾害风险和保障水库蓄水等方面发挥巨大作用。Abstract: Based on meteorological data, data of losses from typhoon and economic development data of Ningbo, the present study evaluated the effects of Typhoon Lekima on Ningbo by using fuzzy algorithm and analytic hierarchy process (AHP). The result showed that the disaster Risk Assessment Index (Ira) of Typhoon Lekima reached Grade 1 (extremely heavy). Although the direct economic loss reached 5.019 billion, the Actual Disaster Index (Iad) was Grade 5 (relatively light). The Iad was lower than the Ira because the improvement of disaster prevention capabilities reduced typhoon disaster losses effectively. Based on inverse projection algorithm, benefits of corresponding meteorological service in Ningbo were estimated to be 4.176 billion, which accounted for 45 percent of the sum of direct economic losses and meteorological service benefits. Based on the forecast released by local meteorological service, local government including the water resources department made decisions of closing sluice gates and flood detention. The decisions ensured reservoirs and downstream channel embankments were safe and reduced the risk of water conservancy facilities being damaged. The decisions also won 45 hours of water drainage time for urban and rural waterlogging, which reduced the water level in the river network and mitigated waterlogging disasters. Abundant water storage in reservoirs secured local water supply when there was a meteorological drought. The fine meteorological service played an important role in reducing the risks of waterlogging and increasing the water storage of reservoirs.
-
表 1 11个指标的权重[14]
指标C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 权重ai 0.139 0 0.057 8 0.069 0 0.171 3 0.106 3 0.112 2 0.077 6 0.167 4 0.043 6 0.016 8 0.039 0 表 2 4个不可避免损失指标权重[18]
指标因子 d1 d2 d3 d4 权重 0.16 0.37 0.37 0.1 表 3 1949—2019年严重影响宁波台风
台风编号 强度等级 死亡人数 直接经济损失/亿元 直接经济损失率 风险评估指数(Ira) 实际灾情指数(Iad) 5612 超强台风 3 897 1.50 12.50 0.78(特重) 2.61(特重) 6126 超强台风 92 0.30 2.10 0.74(特重) 0.93(特重) 7413 台风 104 0.50 2.90 0.65(特重) 0.98(特重) 9711 超强台风 19 45.43 5.05 0.61(严重) 1.01(特重) 1323 强台风 9 333.62 4.68 0.64(严重) 0.87(严重) 1909 超强台风 0 50.19 0.47 0.65(特重) 0.06(较轻) -
[1] 钱燕珍, 郑梅迪, 张程明, 等. 台风预报与服务——以宁波为例[J]. 北京: 气象出版社, 2018: 3-122. [2] 姚秀萍, 吕明辉, 范晓青, 等. 我国气象服务效益评估业务的现状与展望[J]. 气象, 2010, 36(7): 62-68. [3] 姚秀萍, 吕明辉, 范晓青, 等. 气象服务效益评价研究进展[J]. 气象, 2011, 37(6): 749-755. [4] 韩颖, 浦希. 中国的气象服务及其效益评估[J]. 气象科学, 2010, 30(3): 420-426. [5] 孔扬, 赵昶昱, 王科, 等. 宁波舟山港气象灾害风险及服务效益评估[J]. 热带气象学报, 2021, 37(1): 82-90. [6] SAFFI H S. The nature and extent of structural damage caused by Hurricane Camille[R]. National Oceanic and Atmospheric Administration, Washington, DC, 1972 [7] SIMPSON R H. The hurricane disaster potential scale[J]. Weatherwise, 1974, 27(4): 169-186 [8] 徐良炎. 我国台风灾害的初步分析[J]. 气象, 1994, 10(20): 50-55. [9] 蔡则怡, 徐良炎, 徐元太. 我国热带气旋灾害的分析研究[J]. 大气科学, 1994, 18(S1): 826-836. [10] 雷小途, 陈佩燕, 杨玉华, 钱燕珍. 中国台风灾情特征及其灾害客观评估方法[J]. 气象学报, 2009, 67(5): 875-883. [11] 陈佩燕, 杨玉华, 雷小途, 等. 我国台风灾害成因分析及灾情预估[J]. 自然灾害学报, 2009, 18(1): 64-73. [12] 张颖超, 张美娟, 张中秋, 等. 浙江省登陆台风灾害影响评估[J]. 大气科学学报, 2013, 36(2): 230-234. [13] 李春梅, 罗晓玲, 刘锦銮, 等. 层次分析法在台风灾害影响评估模型中的应用[J]. 热带气象学报, 2006, 22(3): 223-228. [14] 顾小丽, 陈有利, 钱燕珍, 等. 宁波市台风灾情评估和基于层次分析法的风险评估[J]. 热带气象学报, 2018, 34(4): 489-498. [15] 周福. 重大气象灾害(台风、暴雨)服务效益评估研究[J]. 科技通报, 1998, 14(13): 39-43, 49. [16] 林继生, 罗金玲, 张勇. 热带气旋灾害预报服务效益评估方法之一—对比分析法[J]. 气象科技, 1998(2): 62-66. [17] LIN Y, CAO C R, WU D H, et al. Study on typhoon disaster loss and risk prediction and benefit assessment of disaster prevention and mitigation[J]. Tropical Cyclone Research and Review, 2018, 7(4): 237-246. [18] 张颖超, 张美娟. 基于逆推算的浙江省台风气象服务效益评估[J]. 信息技术, 2011(10): 30-34. [19] 邢彩盈, 张京红, 车秀芬, 等. 海南省台风气象服务效益评估研究[J]. 气象与环境科学, 2019, 42(4): 55-62. [20] 张康波, 冯明轩, 雷德义. 台风"利奇马"防御工作回顾[J]. 中国防汛抗旱, 2019, 29(11): 1-3, 8. [21] 韩芙蓉, 鹿翔, 冯晓钰, 等. 台风Lekima(1909)登陆前后动热力结构变化对浙江极端降水的影响[J]. 热带气象学报, 2021, 37(1): 34-48. [22] 周福, 陈海燕, 等. 浙江省台风灾害评估与风险区划[M]. 杭州: 浙江教育出版社, 2002: 69-71. [23] 任伯帜, 许仕荣, 王涛. 皮尔逊—Ⅲ型分布统计参数的确定[J]. 中国给水排水, 2001, 17(1): 40-42. [24] 宋宇飞. Matlab在皮尔逊三型曲线拟合中的应用[J]. 工程技术, 2017, 6(5): 165-165. [25] 钱燕珍, 张建勋, 胡亚旦, 等. 宁波市气候变化对水资源的影响[J]. 气象, 2001, 27(6): 52-54. [26] 刘爱民, 涂小萍, 胡春蕾, 等. 宁波气候和气候变化[M]. 北京: 气象出版社, 2009.