RESEARCH ON DIAGNOSIS TECHNIQUE OF TURBULENCE POTENTIAL FOR CIVIL AIRCRAFT GUST LOAD MEASUREMENT FLIGHT TESTS
-
摘要: 为确保民机阵风载荷测量试飞的质量和效率,规避风险,保障安全,解决“找风难”问题,从飞行员飞机颠簸报告入手,利用欧洲中期天气预报中心提供的ERA5全球大气再分析资料,基于10个预报效果较为理想的颠簸指数,通过加权集成算法给出了高空急流背景下的颠簸潜势综合指数。综合指数中单一指数的权重是通过发生颠簸的预报准确率PODY、未发生颠簸的预报准确率PODN、总体预报准确率PODA及TSS评分及中度以上颠簸所占面积fMOG五项评价指标共同确定的。同时评估了颠簸潜势综合指数性能对单一指数数量的敏感性以及对参与建模样本量的敏感性。结果表明:Dutton指数因预报得分φ达1.043,是这10个单一指数中总体预报效果最好的,Brown指数、L-P指数次之。由Dutton指数、Brown指数、L-P指数、TI1指数及风相关指数加权集成的综合指数,较好地集成了各单一指数的优点,各项指标均较为优秀,PODA达90%,TSS达0.80,fMOG达9.2%,预报得分φ达1.225,总体效果最好。随着单一指数数量的增加,综合指数的诊断效果先增大后减小,当单一指数增加到5个的时候,效果最优。随着参与建模的飞机颠簸样本量增加,综合指数性能逐步提升。该综合指数能较好地解决民机阵风载荷测量试飞潜在颠簸区域寻找的问题。Abstract: To ensure the quality and efficiency of civil aircraft gust load measurement flight tests, avoid risks, ensure safety, and overcome the difficulty in finding turbulence, this paper starts with the pilot reports of aircraft turbulence and uses the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecast to give a comprehensive forecast index for turbulence potential under the background of upper-level jets. Research methods include the use of the weighted integration algorithm based on ten predictable aircraft turbulence indexes. The weight of a single index in the comprehensive index is jointly determined by five evaluation indicators, namely the forecast accuracy of turbulence (PODY), the forecast accuracy of null turbulence (PODN), the overall forecast accuracy (PODA), the true skill score (TSS) and the area occupied by the moderate or greater turbulence (fMOG). The results show that the Dutton index has the best overall forecast performance among these 10 single indexes as its forecast score φ is 1.043, followed by Brown index and L-P index. The comprehensive index developed from Dutton index, Brown index, L-P index, TI1 index and wind-related index integrates the advantages of each single index with its individual index all being relatively superior. Its PODA reaches 90%, the TSS reaches 0.80, the fMOG reaches 9.2%, the forecast score φ reaches 1.225, and the overall effect is the best. As the number of single index increases, the diagnostic effect of the comprehensive index increases first and then decreases. When the number of single index increases to 5, the effect becomes optimal. As the number of aircraft turbulence samples involved in modeling increases, the performance of the comprehensive index gradually improves. This comprehensive index can facilitate the search for potential turbulence areas in civil aircraft gust load measurement flight tests.
-
Key words:
- aircraft turbulence /
- ERA5 reanalysis data /
- turbulence index /
- upper-level jets /
- model evaluation
-
表 1 高空急流背景下10种颠簸指数强度阈值划分
颠簸指数 单位 无 轻度 中度 重度 极重度 L-P % L < 0或P < 75 85 95 98 100 -Ri — -20 -2 -0.6 -0.3 0.5 TI1 s-2 1.5×10-7 3.0×10-7 6.0×10-7 9.0×10-7 12.0×10-7 MOSCAT m/s2 0.8×10-3 1.8×10-3 2.8×10-3 3.8×10-3 4.8×10-3 Brown s-3 0.5×10-10 1.5×10-10 3.5×10-10 6.0×10-10 8.0×10-10 Dutton m/(s·km) 20.0 30.0 40.0 50.0 60.0 ζ2 s-2 1.0×10-9 1.5×10-9 3.0×10-9 6.0×10-9 9.0×10-9 HTG K/m 0.8×10-5 1.3×10-5 1.8×10-5 2.3×10-5 2.8×10-5 DIV s-1 3.0×10-5 4.0×10-5 5.0×10-5 6.0×10-5 7.0×10-5 S m/s 30.0 35.0 40.0 50.0 60.0 表 2 280例建模样本的单一颠簸指数性能评估表
颠簸指数 PODY PODN PODA TSS fMOG φ Dutton 0.671 0.821 0.746 0.493 0.078 1.043 Brown 0.664 0.771 0.718 0.436 0.079 1.003 L-P 0.979 0.543 0.761 0.521 0.204 0.970 TI1 0.679 0.693 0.686 0.371 0.124 0.924 S 0.600 0.664 0.632 0.264 0.162 0.835 HTG 0.614 0.636 0.625 0.250 0.149 0.833 MOSCAT 0.600 0.586 0.593 0.186 0.151 0.792 DIV 0.521 0.586 0.554 0.107 0.212 0.719 ζ2 0.450 0.493 0.471 -0.057 0.250 0.611 -Ri 0.550 0.293 0.421 -0.157 0.259 0.550 表 3 60例验证样本的单一颠簸指数及最优综合指数性能评估表
颠簸指数 PODY PODN PODA TSS fMOG φ AUC CAT5 0.867 0.933 0.900 0.800 0.092 1.225 0.996 Brown 0.733 0.967 0.850 0.700 0.062 1.201 0.992 Dutton 0.767 0.933 0.850 0.700 0.063 1.199 0.990 S 0.867 1.000 0.933 0.867 0.185 1.188 1.000 L-P 0.967 0.767 0.867 0.733 0.168 1.118 0.992 MOSCAT 0.733 0.900 0.817 0.633 0.144 1.073 0.979 HTG 0.733 0.733 0.733 0.467 0.139 0.973 0.912 TI1 0.667 0.700 0.683 0.367 0.100 0.939 0.954 -Ri 0.567 0.467 0.517 0.033 0.035 0.791 0.962 ζ2 0.433 0.567 0.500 0.000 0.248 0.645 0.708 DIV 0.267 0.667 0.467 -0.067 0.189 0.623 0.652 -
[1] 赵继伟, 胡赞远. 民用飞机阵风载荷及减缓技术的研究[J]. 民用飞机设计与研究, 2012, 1: 17-20. [2] SHARMAN R, TEBALDI C, WIENER G, et al. An integrated approach to mid- and upper-level turbulence forecasting[J]. Wea Forecasting, 2006, 21(3): 268-287. [3] WILLIAMS J K. Using random forests to diagnose aviation turbulence[J]. Machine Learning, 2014, 95(1): 51-70. [4] 周林, 黄超凡, 钟中, 等. 一次南海高空晴空颠簸事件的形成机制研究[J]. 热带气象学报, 2016, 32(4): 570-576. [5] SHARMAN R D, CORNMAN L B, MEYMARIS G, et al. Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence[J]. J Appl Meteor Climatol, 2014, 53(6): 1416-1432. [6] 王秀春, 顾莹, 李程. 航空气象[M]. 北京清华大学出版社, 2014: 155-156. [7] MENEGUZ E, WELLS H, TURP D. An automated system to quantify aircraft encounters with convectively induced turbulence over europe and the Northeast Atlantic[J]. J Appl Meteor Climatol, 2016, 55(5): 1 077-1 089. [8] JAEGER E B, SPRENGER M. A northern hemispheric climatology of indices for clear air turbulence in the tropopause region derived from ERA40 reanalysis data[J]. Geophys Res, 2007, 112(D20): D20106. [9] 俞飞, 王科, 梁爱民, 等. 华北地区晴空颠簸的分类特征及分析[J]. 气象, 2008, 34(8): 15-21. [10] 申燕玲, 王东海, 巩远发, 等. 中国冬季飞机颠簸的统计分析[J]. 成都信息工程大学学报, 2017, 32(4): 426-432. [11] ENDLICH R M. The Mesoscale structure of some regions of clear-air turbulence[J]. J Appl Meteor, 1964, 3(3): 261-276. [12] ELLROD G P, KNAPP D I. An objective clear-air turbulence forecasting technique: verification and operational use[J]. Wea Forecasting, 1992, 7(1): 150-165. [13] REAP R M. Probability forecasts of clear-air turbulence for the contiguous U.S. National Weather Service Office of meteorology tech[J]. Procedures Bull, 1996, 430: 15. [14] BROWN R. New indices to locate clear-air turbulence[J]. Meteor Mag, 1973, 102: 347-360. [15] DUTTON J. Probability forecasts of clear-air turbulence based on numerical Output[J]. Meteor Mag, 1980, 109: 293-310. [16] ARAKAWA H. Severe turbulence resulting from excessive wind-shear in tropical cyclones[J]. J Atmos Sci, 1952, 9(3): 221-223. [17] BULDOVSKⅡ, G S, BORTNIKOV S A, RUBINSHTEJN M V. Forecasting zones of intense turbulence in the upper troposphere[J]. Meteor Gidrol, 1976, 2: 9-18. [18] COLSON D, PANOFSKY H A. An index of clear air turbulence[J]. Quart J Roy Meteor Soc, 1965, 91(390): 507-513. [19] KELLER J L. Clear air turbulence as a response to meso- and synoptic-scale dynamic processes[J]. Mon Wea Rev, 1990, 118: 2 228-2 242. [20] 徐佳男, 王东海, 巩远发, 等. 中国地区飞机颠簸的定量诊断及分布特征研究[J]. 成都信息工程大学学报, 2018, 33(6): 704-712. [21] KIM J H, CHUN H Y, SHARMAN R D, et al. Evaluations of Upper-Level Turbulence Diagnostics Performance Using the Graphical Turbulence Guidance (GTG) System and Pilot Reports (PIREPs) over East Asia[J]. J Appl Meteor Climatol, 2011, 50(9): 1 936-1 951. [22] 沈强, 沈文武. 一种新的预报晴空湍流综合算法[J]. 气象与减灾研究, 2009, 32(2): 44-49. [23] KARL H, BERRISFORD P. ERA5: data documentation[EB / OL]. https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation, 2020-11-27. [24] 李呈祥. 我国飞机颠簸的主要时空分布特征研究[D]. 广汉: 中国民用航空飞行学院, 2018. [25] 王洪芳, 金维明. 飞机颠簸及预报方法研究[J]. 气象科技, 1997, 25(1): 29-34. [26] WILLIAMS P D. Increased light, moderate, and severe clear-air turbulence in response to climate change[J]. Adv Atmos Sci, 2017, 34(5): 576- 586. [27] MASON I. A model for assessment of weather forecasts[J]. Aust Meteor Mag, 1982, 30: 677-688. [28] 刘雷. 基于NOAA数据资料的晴空湍流预测方法研究[D]. 广汉: 中国民用航空飞行学院, 2018. [29] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2005, 27(8): 861-874.