SPATIO-TEMPORAL CHARACTERISTICS OF FREQUENCY OF HEAVY RAINFALL EVENTS IN HUBEI PROVINCE AND ANALYSIS OF TOPOGRAPHIC RELATIONSHIP BASED ON GWR
-
摘要: 利用1983—2017年湖北省汛期74个国家气象站逐小时降水数据,按长、短历时强降水事件分类研究强降水频次的时空特征,并运用普通最小二乘法(OLS)、地理加权回归(GWR)方法定量探讨强降水频次与地形因子之间的关系。(1) 湖北汛期长、短历时强降水年频次周期变化明显,年代际变化(≥10 a)存在1个主振荡模态,年代际以下尺度(<10 a)存在2个主振荡模态。(2) 长历时强降水旬频次在梅雨期达到顶峰,盛夏期减少,而短历时则在梅雨结束后的7月中旬出现跃升;长、短历时强降水频次日变化曲线都为单峰结构。(3) 湖北长、短历时强降水高频次站点多出现在地面存在准常定中尺度辐合线或涡旋的特定地形条件下。(4) 地理加权回归较传统普通最小二乘法显著提高了强降水频次与海拔高度、坡度的拟合效果。结合拟合系数显著性检验分析,地理加权回归不适用于样本偏少、站点稀疏的鄂西山地,更适用于多中小尺度地形的湖北中东部。(5) 地理加权回归模型中,海拔高度与长历时强降水频次在大别山东麓西侧正相关最大,在大别山西麓南侧负相关最大,坡度则正相反;海拔高度、坡度对短历时强降水频次的最大影响在大别山东麓西侧以及沿长江干流的低洼城市带武汉-黄石地区,武汉站分别为-0.20次/米、6.43次/度,这里地形坡度影响远超海拔高度。Abstract: Based on the hourly heavy precipitation data from 74 national meteorological observation stations during the rainy seasons (May to September) from 1983 to 2017 in Hubei Province, the heavy precipitation events were classified into long and short duration heavy precipitation events according to their temporal and spatial characteristics. The methods of ordinary least squares (OLS) and geographically weighted regression (GWR) were used to quantitatively explore the relationship between heavy rainfall frequency and terrain factor. The results showed that the annual frequency of short duration heavy precipitation in extended rainy seasons in Hubei Province had obvious periodic variation, and there was one main oscillation mode in interdecadal variation (≥10 a), and two main oscillation modes in the variation of periods with a timescale shorter than interdecadal (< 10 a). The ten-day frequency of longduration heavy precipitation reached its peak in Meiyu periods, and decreased in midsummer periods, while the frequency of short duration heavy rainfall jumped in the middle of July after the end of Meiyu periods. The diurnal variation curves of long and short duration heavy rainfall were both single peak structures. The high-frequency stations of long and short-duration heavy precipitation in Hubei Province mostly appeared under specific terrain conditions where there were quasi-constant mesoscale convergence lines or vortices on the ground. Compared with the traditional OLS method, GWR significantly improved the fitting effect of heavy rainfall frequency, altitude and slope. Combined with the analysis of the significance of the fitting coefficients, GWR was not suitable for the mountainous areas with small samples and sparse sites in western Hubei Province, and more suitable for the central and eastern parts of Hubei Province which is home to medium and small-scale topography. In the geographically weighted regression model, the positive correlation between the altitude and the frequency of long-duration heavy precipitation was the largest on the west side of the eastern foot of Dabie Mountain, and the negative correlation was the largest on the south side of the western foothill of Dabie Mountain, while it was the opposite with slopes. Altitude and slope had a positive effect on the frequency of short-duration heavy precipitation. The greatest impact was on the west side of the eastern foot of the Dabie Mountains and the low-lying urban belt along the mainstream of the Yangtze River in the Wuhan-Huangshi region. They were -0.20 times/m and 6.43 times/degree respectively at the Wuhan station where the influence of terrain slope was much higher than altitude.
-
Key words:
- hourly heavy rainfall /
- frequency /
- attitude /
- slope /
- topography
-
表 1 短历时强降水频次OLS结果汇总
变量 系数 标准差 T统计量 概率 Robust-SE Robust_T Robust_Pr VIF 截距 61.403 2.443 25.134 0.000* 2.129 28.842 0.000* - 海拔高度 -0.038 0.011 -3.301 0.002 0.013 -2.941 0.004* 4.711 坡度 0.986 0.497 1.986 0.051 0.555 1.777 0.080 4.711 注:号表示通过0.01的显著性检验。下同。 表 2 长历时强降水频次OLS结果汇总
变量 系数 标准差 T统计量 概率 Robust-SE Robust_T Robust_Pr VIF 截距 87.341 4.710 18.545 0.000* 4.416 19.779 0.000* - 海拔高度 -0.011 0.022 -0.493 0.624 0.015 -0.763 0.448 4.711 坡度 -1.152 0.957 -1.203 0.233 0.737 -1.152 0.123 4.711 表 3 OLS、GWR模型估算结果评价指标
拟合系数 短历时频次(OLS) 长历时频次(OLS) 短历时频次(GWR) 长历时频次(GWR) R2 0.18 0.15 0.64 0.77 R2 Adjusted 0.15 0.13 0.54 0.71 修正的AICc 614.51 711.66 575.03 637.21 残差平方和 15 590.48 57 943.21 6 834.25 15 833.85 -
[1] 陶诗言. 中国之暴雨[M]. 北京: 科学出版社, 1980: 5-7. [2] 郑永光, 陈炯, 朱佩君. 中国及周边地区夏季中尺度对流系统分布及其日变化特征[J]. 科学通报, 2008, 53(4): 471-481. [3] YU R C, ZHOU T J, XIONG A Y, et al. Diurnal variations of summer precipitation over contiguous China[J]. Geophys Res Lett, 2007, 34: L01704, doi: 10.1029/2006GL028129. [4] YU R C, ZHOU T J, XIONG A Y, et al. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophys Res Lett, 2007, 34, L13703, doi: 10.1029/2007GL030315. [5] 李建, 宇如聪, 王建捷. 北京市夏季降水的日变化特征[J]. 科学通报, 2008, 53(7): 829-832. [6] 计晓龙, 吴昊旻, 黄安宁, 等. 青藏高原夏季降水日变化特征分析[J]. 高原气象, 2017, 36(5): 1 188-1 200. [7] 戴泽军, 宇如聪, 陈昊明. 湖南夏季降水日变化特征[J]. 高原气象, 2009, 28(6): 1 463-1 470. [8] 原韦华, 宇如聪, 傅云飞. 中国东部夏季持续性降水日变化在淮河南北的差异分析[J]. 地球物理学报, 2014, 57(3): 752-759. [9] 梁苏洁, 程善俊, 郝立生, 等. 1970—2015年京津冀地区暖季小时降水变化特征[J]. 暴雨灾害, 2018, 37(2): 105-114. [10] 杨萍, 肖子牛, 石文静. 基于小时降水资料研究北京地区降水的精细化特征[J]. 大气科学, 2017, 41(3): 475-489. [11] 司波, 余锦华, 丁裕国. 四川盆地短历时强降水极值分布的研究[J]. 气象科学, 2012, 32(4): 403-410. [12] 周秋雪, 康岚, 蒋兴文, 等. 四川盆地边缘山地强降水与海拔的关系[J]. 气象, 2019, 45(6): 811-819. [13] 曹萍萍, 陈朝平, 徐栋夫, 等. 基于集合预报的四川夏季强降水订正实验[J]. 热带气象学报, 2017, 33(1): 111-118. [14] 李强, 邓承之, 张勇, 等. 1980—2012年5—9月川渝盆地小时强降水特征研究[J]. 气象, 2017, 43(9): 1 073-1 083. [15] 毛冬艳, 曹艳察, 朱文剑, 等. 西南地区短时强降水的气候特征分析[J]. 气象, 2018, 44(8): 1 042-1 050. [16] 周秋雪, 刘莹, 冯良敏, 等. 2008—2012年四川强小时雨强的时空分布特征[J]. 高原气象, 2015, 34(5): 1 261-1 269. [17] 李强, 王秀明, 周国兵, 等. 四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究[J]. 高原气象, 2020, 39(5): 960-972. [18] 殷娴, 胡颖, 尹丽云, 等. 低纬高原地区短时强降水与雷电活动相关性研究[J]. 热带气象学报, 2021, 37(1): 25-33. [19] 傅抱璞. 地形和海拔高度对降水的影响[J]. 地理学报, 1992(4): 302-314. [20] 蒋忠信. 山地降水垂直分布模式讨论[J]. 地理研究, 1988, 7(1): 73-78. [21] 喻洁, 喻家龙. 山地降水垂直分布三参数高斯模式及其应用[J]. 地理研究, 1996(4): 82-86. [22] 舒守娟, 王元, 熊安元, 等. 中国区域地理、地形因子对降水分布影响的估算和分析[J]. 地球物理学报, 2007, 50(6): 1 703-1 712. [23] 罗琦, 李栋梁, 张杰, 等. 青藏高原东部雨季降水量分布模型的建立[J]. 干旱区研究, 2007, 24(6): 766-772. [24] 周学云, 高文良, 吴亚平, 等. 定量研究雅安地形坡向坡度对降水分布的影响[J]. 气象科学, 2019, 39(3): 322-335. [25] KUMARI M, SINGH C K, BAKIMCHANDRA O, et al. Geographically Weighted Regression based quantification of rainfall-topography relationship and rainfall gradient in Central Himalayas[J]. Int J Climatol, 2017, 37(3): 1 299-1 309. [26] BRUNSDON C, MC CLATCHEY J, UNWIN D J. Spatial variations in the average rainfall-altitude relationship in Great Britain: an approach using geographically weighted regression[J]. Int J Climatol, 2010, 23(4): 905-917. [27] AL-AHMADI K, AL-AHMADI S. Rainfall-altitude relationship in Saudi Arabia[J]. Advances in Meteorology, 2013: 60-73. [28] DAI A, GIORGI F, TRENBERTH K E. Observed and model-simulated diurnal cycles of precipitation over the contiguous United States[J]. J Geophys Res Atmos, 1999, 104(D6): 6 377-6 402. [29] YIN S Q, CHEN D, XIE Y. Diurnal variations of precipitation during the warm season over China[J]. Int J Climatol, 2009, 29 (8): 1 154-1 170. [30] 周静, 郑永骏, 苗春生, 等. 梅雨锋强降水与低空急流日变化的观测分析和数值模拟[J]. 热带气象学报, 2017, 33(5): 750-761. [31] XUE M, LUO X, ZHU K, et al. The controlling role of boundary layer inertial oscillations in Meiyu frontal precipitation and its diurnal cycles over China[J]. J Geophys Res Atmos, 2018, 123 (10): 5 090-5 115. doi: 10.1029/2018JD028368. [32] HE H, ZHANG F. Diurnal variations of warm-season precipitation over northern China[J]. Mon Wea Rev, 2010, 138(4): 1 017-1 025. [33] SUN J, ZHANG F. Impacts of mountain-plains solenoid on diurnal variations of rainfalls along the mei-yu front over the east China plains[J]. Mon Wea Rev, 2012, 140(2): 379-397. [34] 徐双柱, 王丽, 叶成志, 等. 东风低空急流暴雨的中尺度分析[J]. 气象, 2006, 32(2): 28-33. [35] 张家国, 周金莲, 谌伟, 等. 大别山西侧极端降水中尺度对流系统结构与传播特征[J]. 气象学报, 2015, 73(2): 291-304. [36] 谌伟, 岳阳, 刘佩廷, 等. 鄂东北一次特大暴雨过程的两个中尺度对流系统分析[J]. 暴雨灾害, 2017, 36(4): 357-364. [37] 王珏, 张家国, 吴涛, 等. 湖北省极端短时强降水MCS类型及特征分析[J]. 气象, 2019, 45(7): 931-944. [38] 崔春光, 房春花, 胡伯威, 等. 地形对低涡大暴雨影响的数值模拟试验[J]. 气象, 2000, 26(8): 14-18. [39] 孙继松, 杨波. 地形与城市环流共同作用下的β中尺度暴雨[J]. 大气科学, 2008, 32(6): 1 352-1 364. [40] 赵玉春, 徐明, 王叶红, 等. 2010年汛期长江中游对流降水日变化特征分析[J]. 气象, 2012, 38(10): 1 196-1 206.