IMPACT OF DIFFERENT BOUNDARY LAYER PARAMETERIZATION SCHEMES ON THE SIMULATION OF TYPHOON LEKIMA
-
摘要: 基于中尺度数值模式WRF,对比分析了六种大气边界层物理过程参数化方案(BouLac、MYJ、UW、YSU、ACM2、SH)对台风“利奇马”模拟结果的影响。结果表明,不同边界层方案对“利奇马”路径的模拟结果影响较小,但对其强度和结构演变的模拟结果影响显著。其中,局地闭合方案UW方案模拟的结果最强,局地闭合方案BouLac次之,而局地闭合方案MYJ和三种非局地闭合方案YSU、ACM2和SH的模拟强度都较弱。这些方案中,BouLac模拟的海平面最低气压与实况最为接近。通过对比这些边界层方案的模拟结果发现,由于台风强度的差异受到热力和动力的共同影响,边界层方案如模拟得到的地表潜热通量和边界层中湍流扩散系数较大,将导致较大的径向风和低层辐合,从而模拟得到较强的台风强度;反之,则台风强度较弱。Abstract: The present study compared and analyzed the simulation results of Typhoon Lekima based on six optional atmospheric boundary layer parameterization schemes provided by the Weather Research and Forecasting (WRF) mesoscale numerical model, namely, BouLac, MYJ, UW, YSU, ACM2, and SH. The results show that different boundary layer schemes have little influence on the simulated track of Typhoon Lekima, but have a significant impact on the simulated intensity and structural evolution. The intensities simulated by the local closure scheme UW are the strongest, followed by those by the local closure scheme BouLac, while the simulated intensities by the local closure scheme MYJ and the three non-local schemes including YSU, ACM2, and SH are weaker. Among them, the lowest air pressure simulated by BouLac is the closest to the real situation. Through comparison between the results from different boundary layer schemes, it is found that typhoon intensity is affected by both thermal and dynamic factors. The larger the surface latent heat flux and turbulent diffusion coefficient in the boundary layer are simulated, the larger the radial winds and low-level convergence will be generated, and thus the stronger the simulated typhoon, and vice versa.
-
表 1 模式其它方案的设定
模式部分 设定 模式 WRF3.9.1 水平分辨率/km 18:6:2 模式积分时间/h 108 微物理参数化方案 WSM6 积云对流参数化方案 Kain-Fritsch 长波和短波辐射方案 RRTMG 陆面过程方案 Noah 表 2 边界层方案主要特征
方案名称(研发年份) 闭合方式 主要特征 BouLac(1989) 局地1.5阶闭合 保留了逆梯度项,利用湍流动能和温度梯度计算混合长 MYJ(1994) 局地1.5阶闭合 通过湍流动能廓线判定边界层高度,适用于稳定或弱不稳定边界层 UW(2009) 局地1.5阶闭合 考虑引入水分守恒量并显示计算夹卷率 YSU(2006) 非局地1阶闭合 增加反梯度输送,增加了边界层顶部的夹卷作用 ACM2(2006) 非局地1阶闭合 显式非局地输送,使用K廓线确定扩散系数 Shin-Hong (2015) 非局地1阶闭合 考虑网格尺度依赖 -
[1] GRAY W M. Global view of the origin of tropical disturbances and storms[J]. Mon Wea Rev, 1968, 96(10): 669-700. [2] SUZUKI O, NⅡNO H, OHNO H, et al. Tornado-producing mini supercells associated with Typhoon 9019[J]. Mon Wea Rev, 2000, 128 (128): 1 868-1 882. [3] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-432. [4] HO C H, BAIK J J, KIM J H, et al. Interdecadal changes in summertime typhoon tracks[J]. J Climate, 2004, 17(9): 1 767-1 776. [5] HARR P A, ELSBERRY R L. Extratropical transition of tropical cyclones over the Western North Pacific. Part Ⅰ: Evolution of structural characteristics during the transition process[J]. Mon Wea Rev, 2000, 128(8): 2 634-2 653. [6] 胡非, 洪钟祥, 雷孝恩. 大气边界层和大气环境研究进展[J]. 大气科学, 2003, 27(4): 712-728. [7] 陈炯, 王建捷. 边界层参数化方案对降水预报的影响[J]. 应用气象学报, 2006, 17(S1): 11-17. [8] ROGER K, GERALD L T. Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model[J]. Quart J Roy Meteor Soc, 2010, 136(652): 1 671-1 685. [9] BRAUN, S A. A Cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy[J]. Mon Wea Rev, 2002, 130 (6): 1 573-1 592. [10] NOLAN D S, ZHANG J A, STERN D P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part Ⅰ: Initialization, maximum winds, and the outer-core boundary layer[J]. Mon Wea Rev, 2009, 137(11): 3 651-3 674. [11] SMITH R K, THOMSEN G L. Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model[J]. Quart J Roy Meteor Soc, 2010, 136(652): 1 671-1 685. [12] 邓国, 周玉淑, 李建通. 台风数值模拟中边界层方案的敏感性试验——Ⅰ. 对台风结构的影响[J]. 大气科学, 2005, 29(3): 417-428. [13] ZHANG J A, NOLAN D S, ROGERS R F, et al. Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF[J]. Mon Wea Rev, 2015, 143(8): 3 136-3 155. [14] 温晓培, 隆霄, 张述文, 等. 边界层参数化方案对台风SANBA初生阶段影响的数值模拟研究[J]. 热带气象学报, 2016, 32(3): 346-357. [15] LIUJ J, ZHANG F M, PU Z X. Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes[J]. Adv Atmos Sci, 2017, 34(4): 482-496. [16] 丁成慧, 李江南, 赵杨洁, 等. 边界层参数化方案对南海秋季台风"莎莉嘉"(2016) 模拟的影响[J]. 热带气象学报, 2018, 34(5): 657-673. [17] PRADHAN P K, LIBERATO M L R, KUMAR V, et al. Simulation of mid-latitude winter storms over the North Atlantic Ocean: impact of boundary layer parameterization schemes[J]. Climate Dynamics, 2019, 53(11): 6 785-6 814. [18] HONG S Y, LIM J O J. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Asia-Pacific Journal of Atmospheric Sciences, 2006, 42(2): 129-151. [19] KAIN J S, FRITSCH J M. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J Atmos Sci, 1990, 47(23): 2 784-2 802. [20] KAIN J S, FRITSCH J M. Convective parameterization for mesoscale models: The Kain-Fritsch scheme[M]/The representation of cumulus convection in numerical models. American Meteorological Society, Boston, MA, 1993: 165-170. [21] MLAWER E J, TAUBMAN S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16 663-16 682. [22] CHEN F, DUDHIA J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ: Model implementation and sensitivity[J]. Monthly weather review, 2001, 129(4): 569-585. [23] BOUGEAULT P, NOILHAN J, LACARRERE P, et al. An experiment with an advanced surface parameterization in a mesobeta-scale model. Part Ⅰ: Implementation[J]. Monthly Weather Review, 1991, 119(10): 2 358-2 373. [24] PAN H H L. Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model[J]. Mon Wea Rev, 1996, 124(124): 2 322. [25] SUKORIANSKY S, GALPERIN B, STAROSELSKY I. A quasinormal scale elimination model of turbulent flows with stable stratification[J]. Physics of fluids, 2005, 17(8): 085107. [26] HONG S Y, NOH Y, DUCHIES J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes[J]. Mon Wea Rev, 2006, 134(9): 2318. [27] PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part Ⅱ: Application and evaluation in a mesoscale meteorological model[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 396-1 409. [28] PARK S, BRETHERTON C S. The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model[J]. J Climate, 2009, 22(12): 3 449-3 469. [29] SHIN H H, HONG S Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Boundary-Layer Meteorology, 2011, 139(2): 261-281. [30] 黄文彦, 沈新勇, 王卫国, 等. 边界层参数化方案对边界层热力和动力结构特征影响的比较[J]. 地球物理学报, 2014, 57(5): 1 399-1 414. [31] KEPERT J D. Choosing a boundary layer parameterization for tropical cyclone modeling[J]. Mon Wea Rev, 2012, 140(5): 1 427-1 445.