VARIATION OF ANNUALLY FIRST RAINY SEASON PRECIPITATION OVER GUANGXI AND ITS CASUAL RELATION WITH SEA SURFACE TEMPERATURE IN THE SOUTHEAST PACIFIC
-
摘要: 利用1979—2019年全国160站逐月降水资料、国家气候中心的西太平洋副热带高压特征指数逐月资料、英国Hadley中心逐月海表面温度资料以及NCEP/NCAR逐月再分析资料,结合小波分析、相关分析、信息流以及合成分析方法,分析了广西前汛期降水的变化特征及其与东南太平洋海温变化的因果联系。结果表明:近40 a来广西前汛期降水呈弱增多趋势,在1980年代末至21世纪初存在显著的3~5 a周期。在1980年代至1990年代初为少雨期,而在20世纪末至21世纪初期转为多雨期。东南太平洋是海温影响广西前汛期降水的关键区,同年春季以及同期该区域海温变化是造成广西前汛期降水变化的原因之一,海温升高(降低)能够部分导致降水的减少(增多)。同年春季海温偏冷年,关键区西侧为对流抑制,南太平洋出现异常反气旋环流响应,通过垂直环流引起澳大利亚西北侧上升运动异常,减弱了局地Hadley环流。该异常通过大气桥一方面使得副高增强增大,位置偏西偏南,有利于副高西侧的西南气流向广西输送水汽;另一方面使得广西地区上空局地Hadley下沉支减弱,受异常上升运动控制,对流增强,导致降水正异常。反之亦然。Abstract: The variation of annually first rainy season (FRS) precipitation of Guangxi and its casual relation with sea surface temperature (SST) in the Southeast Pacific are studied by using monthly precipitation data from 160 stations in China, National Climate Centre West Pacific Subtropical High (WPSH) indices, Hadley SST data and NCEP/NCAR monthly reanalysis data during 1979-2019, as well as the methods of wavelet analysis, correlation analysis, information flow and composite analysis. The results show that the FRS precipitation is characterized by a weak increasing trend over the past 40 years. The precipitation variation showed a significant 3-5 year oscillation from late 1980s to the early 21st century. During the FRS of Guangxi, there was less precipitation from 1980s to early 1990s while more precipitation from the end of 20th century to the beginning of the 21st century. Southeast Pacific is the key region where SST influences FRS precipitation over Guangxi, and the SST change in previous spring or at the same period contribute to the variations of FRS precipitation. Rise (drop) of SST may partly influence the decrease (increase) of precipitation. In negative SST anomaly years, convection suppression occurs on the west side of the key region, leading to an abnormal response of anticyclonic circulation in the South Pacific, which causes an abnormal upward movement on the northwest side of Australia and weakens the local Hadley circulation by influencing vertical circulation. On the one hand, influenced by this anomaly through the atmospheric bridge, the WPSH becomes stronger and larger, with a more westward and northward position which is conducive to the water vapor transport from South China Sea to Guangxi. On the other hand, this anomaly weakens the local Hadley sinking branch over Guangxi, which is controlled by the abnormal upward movement, enhancing convection, and ultimately causing more precipitation, and vice versa.
-
表 1 关键区海温与副高(WPSH)特征指数的相关系数(R)以及信息流(TSST3→WPSH)
副高特征指数 强度指数 面积指数 西伸脊点 脊线 R -0.302(95%) -0.351(95%) 0.408(99%) 0.101 TSST3→WPSH -0.049(80%) -0.050(80%) -0.042(70%) -0.025(95%) 注:括号内数值表示通过的显著性检验水平。 -
[1] 吴志伟, 江志红, 何金海. 近50年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析[J]. 大气科学, 2006, 30(3): 391-401. [2] 黄永新. 广西汛期旱涝与前期强信号的关系的统计分析[J]. 气象研究与应用, 2000, 21(增刊): 7-12. [3] 梁隽玫, 李耀先, 李秀存. 厄尔尼诺对广西汛期旱涝的影响[J]. 气象研究与应用, 2001, 22(1): 24-26. [4] 况雪源, 钟利华, 黄雪松. 广西前汛期旱涝特征及成因分析[J]. 气象研究与应用, 2001, 22(4): 5-8. [5] 况雪源, 黄梅丽, 林振敏, 等. 广西前汛期降水年代际变化与南半球印度洋海温的关系[J]. 热带气象学报, 2008, 24(3): 279-284. [6] 强学民, 杨修群. 华南前汛期降水异常与太平洋海表温度异常的关系[J]. 地球物理学报, 2013, 56(8): 2 583-2 593. [7] 马慧, 陈桢华, 姜丽萍, 等. 华南前汛期降水与我国近海海温的SVD分析[J]. 热带气象学报, 2009, 25(2): 241-245. [8] WANG X, LI C, ZHOU W. Interdecadal mode and its propagating characteristics of SSTA in the South Pacific[J]. Meteorology & Atmospheric Physics, 2007, 98(1-2): 115-124. [9] 刘舸, 张庆云, 孙淑清. 澳大利亚东侧环流及海温异常与长江中下游夏季旱涝的关系[J]. 大气科学, 2008, 32(2): 231-241. [10] 周波涛. 冬季澳大利亚东侧海温与长江流域夏季降水的联系及可能物理机制[J]. 科学通报, 2011(16): 65-71. [11] 李丽平, 周林, 俞子闲. 华南前汛期降水的年代际异常特征及其成因[J]. 大气科学学报, 2018, 41(2): 186-197. [12] LIANG X S. Information flow within stochastic dynamical systems[J]. Phys Rev E, 2008, 78(3): 031113, doi: 10.1103/PhysRevE.78.031113. [13] LIANG X S. The Liang-Kleeman information flow: Theory and applications[J]. Entropy, 2013, 15(1): 327-360, doi: 10.3390/e15010327. [14] LIANG X S. Unraveling the cause-effect relation between time series[J]. Phys Rev E, 2014, 90(5-1): 052150, doi: 10.1103/PhysRevE.90.052150. [15] STIPS A, MACIAS D, Coughlan C, et al. On the causal structure between CO2 and global temperature[J]. Sci Rep, 2016, 6: 21691. [16] 覃皓, 郭栋, 施春华, 等. 南亚高压与邻近地区臭氧变化的相互作用[J]. 大气科学, 2018, 42(2): 421-434. [17] 王惠平, 施春华, 郭栋, 等. 南亚高压强度与邻近地区垂直速度的相互依赖关系[J]. 地球物理学报, 2020, 63(9): 3 240-3 250. [18] 石晨, 廉毅, 杨旭, 等. 东北亚和北半球冬季高空切断冷涡与中国极端低温事件的联系[J]. 气象学报, 2020, 78(5): 778-795. [19] 马慧, 陈桢华, 毛文书, 等. 华南前汛期降水异常及其环流特征分析[J]. 热带气象学报, 2009, 25(1): 89-96. [20] LI L P, ZHANG K M, LUO T, et al. An analysis of the drought and flood hazard characteristics and risks during the pre-rainy season in South China[J]. Natural Hazards, 2014, 71(2): 1 195-1 213. [21] 黄雪松, 况雪源, 黄梅丽, 等. 近百年广西汛期降水的诊断及预测研究[J]. 灾害学, 2006, 21 (1): 43-47. [22] 蒋国兴. 广西地形分布与前汛期降水时空变化关系[J]. 热带地理, 2007: 17-22. [23] 何慧, 廖雪萍, 陆虹, 等. 华南地区1961-2014年夏季长周期旱涝急转特征[J]. 地理学报, 2016, 71(1): 130-141. [24] 陈烈庭. 东太平洋赤道地区海水温度异常对热带大气环流及我国汛期降水的影响[J]. 大气科学, 1977, 1: 1-12. [25] 李耀先, 梁隽玫, 李秀存. 试论厄尔尼诺对广西气候异常影响的物理机制[J]. 气象研究与应用, 2001, 22(1): 32-34. [26] 李海燕, 孙家仁, 谌志刚, 等. 两类El Nino事件对华南前汛期降水异常的影响[J]. 热带气象学报, 2019, 35(4): 491-503. [27] LIU S, DUAN A, WU G. Asymmetrical response of the East Asian Summer Monsoon to the quadrennial oscillation of global sea surface temperature associated with the Tibetan Plateau thermal feedback[J]. J Geophy Res, 2020, 125(20), doi: 10.1029/2019JD032129. [28] 张洁, 周天军, 宇如聪, 等. 中国春季典型降水异常及相联系的大气水汽输送[J]. 大气科学, 2009, 33(1): 121-134. [29] 吴琼, 王晓春, 胡雅君, 等. 热带西太平洋海面高度变化与华南3—4月降水异常的关系[J]. 热带气象学报, 2017, 33(2): 231-240. [30] XIE S P, HU K, HAFNER J, et al. Indian Ocean Capacitor Effect on Indo-Western Pacific Climate during the Summer following El Nino[J]. Journal of Climate, 2009, 22(3): 730-747. [31] 何超, 周天军, 吴波. 影响夏季西北太平洋副热带高压年际变率的关键海区及影响机制[J]. 气象学报, 2015, 73(5): 940-951. [32] 洪梅, 刘科峰, 张栋, 等. 基于交叉小波分析方法的西太平洋副热带高压年际变率与热带海温及大气环流异常的相关性研究[J]. 热带气象学报, 2020, 36(02): 24-37. [33] 李刚, 李崇银, 谭言科, 等. 南太平洋海温异常及其气候影响的研究进展[J]. 气候与环境研究, 2013(4): 539-550. [34] 梁建茵. 6月西太平洋副高脊线的年际变化及其对华南降水的影响[J]. 热带气象学报, 1994, 10(3): 274-279. [35] 黄先香, 炎利军, 施能. 华南前汛期旱涝影响因子和预报方法[J]. 热带气象学报, 2006, 22(5): 431-438. [36] 陈长胜, 林开平, 王盘兴. 华南前汛期降水异常与水汽输送的关系[J]. 大气科学学报, 2004, 27(6): 721-727. [37] ZHANG R, SUMI A, KIMOTO M. A Diagnostic Study of the Impact of El Niño on the Precipitation in China[J]. Adv Atmos Sci, 1999, 16 (2): 229-241. [38] GILL A E. Some simple solutions for heat-induced tropical circulation[J]. Quart J Roy Meteor Soc, 1980, 106: 447-462 [39] BARNETT T P, PIERCE D W, LATIF M, et al. Interdecadal interactions between the tropics and midlatitudes in the Pacific Basin[J]. Geophysical Research Letters, 1999, 26(5). [40] JIN D, GUAN Z, HUO L, et al. Possible impacts of spring sea surface temperature anomalies over South Indian Ocean on summer rainfall in Guangdong-Guangxi region of China[J]. Climate Dynamics, 2017, 49(9): 1-16. [41] 霍利微, 张福颖, 王易. 两广地区夏季降水异常与澳大利亚东侧海温异常的联系及可能机制[J]. 大气科学学报, 2018, 41(2): 220-227. [42] 任荣彩, 刘屹岷, 吴国雄. 1998年7月南亚高压影响西太平洋副热带高压短期变异的过程和机制[J]. 气象学报, 2007, 65(2): 47-61. [43] 谢志昂, 段安民. 盛夏青藏高原热源与菲律宾海对流活动的联系[J]. 大气科学, 2017, 41(4): 811-830. [44] XUE F, WANG H J, HE J H. Interannual variability of Mascarene High and Australian High and their influences on East Asian Summer Monsoon[J]. Journal of the Meteorological Society of Japan. ser. ii, 2004, 82(4): 1 173-1 186. [45] 杨文艳, 王谦谦. 海温对辽宁省主汛期降水异常影响的统计分析[J]. 大气科学学报, 2005, 28(3): 404-409. [46] 陈文, 康丽华, 王玎. 我国夏季降水与全球海温的耦合关系分析[J]. 气候与环境研究, 2006, 11(3): 259-269.