CHARACTERISTICS OF CLOUD-TO-GROUND LIGHTNING ACTIVITIES IN TYPICAL SEVERE TORNADO STORMS
-
摘要: 闪电活动对于强龙卷天气的发生有一定的指示作用,基于闪电定位资料,结合多普勒天气雷达、探空和ECMWF再分析资料对两次典型强龙卷风暴中地闪的时空演变、雷电流强度及正地闪活动特征进行了统计分析,结果表明:地闪主要发生在组合反射率因子≥30 dBZ的区域内,龙卷发生期间,地闪活动减弱且较为分散。不同龙卷风暴的地闪频次差异较大,这与风暴中上升气流的强度有关;当地闪频次从峰值降至最小值期间,龙卷及地,两次过程中地闪频次峰值分别提前龙卷发生约33 min和28 min。同时,龙卷及地之前,地闪会出现连续多次闪电跃增;龙卷等级越强,正地闪表现越活跃,特征越明显,在江苏盐城阜宁龙卷发生期间,还出现了地闪极性从正地闪主导向负地闪主导的反转;两次龙卷风暴雷电流强度随时间的变化规律并不明显,但均小于历史平均值,地闪发生愈频繁的龙卷风暴,对应的雷电流强度值愈小。Abstract: Lightning activity could be an indicator of the occurrence of a tornado. Based on lightning location data, Doppler radar data, sounding data and ECMWF reanalysis data, the spatio-temporal evolution of cloud-to-ground (CG) lightning, the intensity of lightning current and the features of positive CG lightning in two typical severe tornado storms are analyzed. The results show that CG lightning mainly occurs in the area with composite reflectivity greater than 30 dBZ. When tornadoes occur, CG lightning activities decrease and are relatively dispersed. Due to the different intensities of updrafts, CG lightning frequencies vary greatly in different tornado storms. Tornadoes touch down during the period when CG lightning frequency decreases from the maximum to the minimum. In the two cases, the maximum frequency of CG lightning appears 33 minutes and 28 minutes ahead of the tornado occurrence. Before tornadoes touch down, there are several lightning jumps. Moreover, the higher the tornado event level, the more positive CG lightning occurs, and the more obvious the positive CG lightning characteristics are. A CG lightning polarity reversal from positive-dominated to negative-dominated happens during the tornado episode in Funing County, Yancheng City. Within the lifecycles of the two tornadoes, the lightning current intensity does not vary significantly and is smaller than the historical mean. It is found that the more frequently CG lightning occurs in tornado storms, the smaller the lightning current intensity will be.
-
表 1 主要热动力指标
发生日期 探空站 时间(hh: mm) CAPE/(J/kg) 0~1 km风矢量差/(m/s) 0~6 km风矢量差/(m/s) LCL/m SRH/(m2/s2) 2013.07.07 南京 08:00 646 11.8 17.8 95 244 20:00 1655 7.5 6.9 867 171 2016.06.23 射阳 08:00 592 6.2 16.5 321 67 20:00 3318 7.7 29.2 538 310 表 2 龙卷发生前后30 min雷电流强度均值
龙卷发生日期 名称 正地闪雷电流强度/kA 负地闪雷电流强度/kA (2013—2016年) 均值 25.2 32.1 ①(2013.07.07) 天长龙卷 18.6 28.5 高邮龙卷 21.9 29.9 ②(2016.06.23) 盐城龙卷 16.1 14.6 -
[1] 张小玲, 杨波, 朱文剑, 等. 2016年6月23日江苏阜宁EF4级龙卷天气分析[J]. 气象, 2016, 42(11): 1 304-1 314. [2] 陈元昭, 俞小鼎, 陈训来, 等. 2015年5月华南一次龙卷过程观测分析[J]. 应用气象学报, 2016, 27(3): 334-341. [3] 曾明剑, 吴海英, 王晓峰, 等. 梅雨期龙卷环境条件与典型龙卷对流风暴结构特征分析[J]. 气象, 2016, 42(3): 280-293. [4] 冯佳玮, 闵锦忠, 庄潇然. 中国龙卷时空分布及其环境物理量特征[J]. 热带气象学报, 2017, 33(4): 530-539. [5] 俞小鼎, 赵娟, 范雯杰. 中国龙卷的时空分布与关键环境参数特征[J]. 热带气象学报, 2021, 37(5/6): 681-692. [6] 郑媛媛, 朱红芳, 方翔, 等. 强龙卷超级单体风暴特征分析与预警研究[J]. 高原气象, 2009, 28(3): 617-625. [7] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风"艾云尼" 龙卷分析[J]. 气象学报, 2019, 77(4): 645-661. [8] COPE A M. Toward better use of lightning data in operational forecasting[C]. Second Conference on Meteorological Applications of Lightning Data, Atlanta, 2006. [9] PINEDA N, BECH J, RIGO T, et al. A Mediterranean nocturnal heavy rainfall and tornadic event. Part Ⅱ: Total lightning analysis[J]. Atmospheric Research, 2011, 100(4): 638-648. [10] MCDONALD M, MCCARTHY P J, PATRICK D. Anomalous lightning behavior in northern plains tornadic supercells[C]. 23rd Conference on severe Local Storms, 2007. [11] KANE R J. Correlating lightning to severe local storms in the northeastern United States[J]. Wea Forecasting, 1991, 6(1): 3-12. [12] SCHULTZ C J, PETERSEN W A, CAREY L D. Lightning and severe weather: a comparison between total and cloud-to-ground lightning trends[J]. Wea Forecasting, 2011, 26(5): 744-755. [13] FARNELL C, RIGO T, PINEDA N. Lightning jump as a nowcast predictor: Application to severe weather events in Catalonia[J]. Atmospheric Research, 2017, 183: 130-141. [14] METZGER E L. The relationship between total cloud lightning behavior and radar-derived thunderstorm structure[J]. Wea Forecasting, 2013, 28(1): 237-253. [15] CHRONIS T, CAREY L D, SCHULTZ C J, et al. Exploring lightning jump characteristics[J]. Wea Forecasting, 2014, 30(1): 23-37. [16] CAREY L D, PETERSEN W A, RUTLEDGE S A. Evolution of cloud-to-ground lightning and storm structure in the Spencer, south Dakota, tornadic supercell of 30 May 1998[J]. Mon Wea Rev, 2003, 131(8): 1 811-1 831. [17] GUO F X, YANG L I, HUANG Z C, et al. Numerical simulation of 23 June 2016 Yancheng city EF4 tornadic supercell and analysis of lightning activity[J]. Science China, 2017, 60(12): 2 204-2 213. [18] ZHENG D, MACGORMAN D R. Characteristics of flash initiations in a supercell cluster with tornadoes[J]. Atmospheric Research, 2016, 167: 249-264. [19] 范雯杰, 俞小鼎. 中国龙卷的时空分布特征[J]. 气象, 2015, 41(7): 793-805. [20] 徐芬, 郑媛媛, 孙康远. 江苏龙卷时空分布及风暴形态特征[J]. 气象, 2021, 47(5): 517-528. [21] 周后福, 施丹平, 刁秀广, 等. 2013年7月7日苏皖龙卷环境场与雷达特征分析[J]. 干旱气象, 2014, 32(3): 415-423. [22] 郑永光, 朱文剑, 姚聃, 等. 风速等级标准与2016年6月23日阜宁龙卷强度估计[J]. 气象, 2016, 42(11): 1 289-1 303. [23] 顾瑜, 孙即霖, 楚合涛. 2016年6月江苏阜宁一次超强龙卷的特征分析[J]. 中国海洋大学学报(自然科学版), 2018, 48(2): 11-21. [24] 李彩玲, 谭浩波, 蔡康龙, 等. 2016—2020年中国龙卷过程和灾情特征[J]. 热带气象学报, 2021, 37(5/6): 733-747. [25] 马启明, 周晓, 胡钛, 等. VLF/LF三维闪电监测定位系统研制报告[R]. 武汉: 中国气象局气象探测中心, 2013. [26] LIU Y, WANG H B, LI Z, et al. A verification of the lightning detection data from FY-4A LMI as compared with ADTD-2[J]. Atmospheric Research, 2021, 248: 105163. [27] 田彩霞, 马启明, 周晓, 等. 江苏省三维闪电定位系统算法仿真[J]. 武汉大学学报(理学版), 2014, 60(2): 115-121. [28] WILLIAMS E, BOLDI B, MATLIN A, et al. The behavior of total lightning activity in severe Florida thunderstorms[J]. Atmospheric Research, 1999, 51(3-4): 245-265. [29] YAO W, ZHANG Y J, MENG Q, et al. A comparison of the characteristics of total and cloud-to-ground lightning activities in hailstorms[J]. Acta Meteorologica Sinica, 2013, 27(2): 282-293. [30] 周海光. "6·23" 江苏阜宁EF4级龙卷超级单体风暴中尺度结构研究[J]. 地球物理学报, 2018, 61(9): 3 617-3 639. [31] 刘冬霞, 郄秀书, 冯桂力. 华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关系研究[J]. 大气科学, 2010, 34(1): 95-104. [32] SMITH S B, LADUE J G, MACGORMAN D R. The relationship between cloud-to-ground lightning polarity and surface equivalent potential temperature during three tornadic outbreaks[J]. Mon Wea Rev, 2000, 128(9): 3 320-3 328. [33] 孙凌, 陈志雄, 徐燕, 等. 北京一次强飑线过程的闪电辐射源演变特征及其与对流区域和地面热力条件的关系[J]. 大气科学, 2019, 43 (4): 759-772. [34] ZIEGLER C L, MACGORMAN D R. Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm[J]. J Atmos Sci, 1994, 51: 833-851. [35] DEIERLING W, PETERSEN W A. Total lightning activity as an indicator of updraft characteristics[J]. J Geophy Res, 2008, 113: 1-11. [36] RAKOV V A, UMAN M A. 雷电[M]. 张云峰, 吴建兰译. 北京: 机械工业出版社, 2016: 184-186. [37] 姚叶青, 魏鸣, 王成刚, 等. 一次龙卷过程的多普勒天气雷达和闪电定位资料分析[J]. 大气科学学报, 2004, 27(5): 587-594. [38] BIGGAR D G. A case study of a positive strike dominated supercell thunderstorm that produced an F2 tornado after undergoing a significant cloud-to-ground lightning polarity shift[J/OL]. Electronic Journal of Operational Meteorology, 2002, http://nwafiles.nwas.org/ej/pdf/2002-EJ2.pdf. [39] CALHOUN K M, MACGORMAN D R, ZIEGLER C L, et al. Evolution of lightning activity and storm charge relative to Dual-Doppler analysis of a high-precipitation supercell storm[J]. Mon Wea Rev, 2013, 141(7): 2 199-2 223. [40] 杨祖祥, 赵森, 李萌萌, 等. 2020年7月22日安徽梅雨期龙卷的双偏振雷达观测分析[J]. 热带气象学报, 2021, 37(5/6): 836-844.