[1] |
MADDEN R A, JULIAN P R. Detection of a 40-50 day oscillation in zonal wind in tropical Pacific[J]. J Atmos Sci, 1971, 28(5): 702-708.
|
[2] |
MADDEN R A, JULIAN P R. Description of global-scale circulation cells in tropics with a 40-50 day period[J]. J Atmos Sci, 1972, 29(6): 1 109-1 123.
|
[3] |
RUI H. Development characteristics and dynamic structure of tropical intraseasonal convection anomalies[J]. J Atmos Sci, 1990, 47(3): 357-379.
|
[4] |
WEICKMANN K M. Intraseasonal circulation and outgoing long wave radiation modes during northern hemisphere winter[J]. Mon Wea Rev, 1983, 111(9): 1 838-1 858.
|
[5] |
WANG B, CHEN G, LIU F. Diversity of the Madden-Julian Oscillation[J]. Science Advances, 2019, 5(7): eaax0220.
|
[6] |
MATTHEWS A J. Propagation mechanisms for the Madden-Julian Oscillation[J]. Quart J R Meteor Soc, 2000, 126(569): 2637-2651.
|
[7] |
KNUTSON T R, WEICKMANN K M. 30-60-day atmospheric oscillations: composite life cycles of convection and circulation anomalies[J]. Mon Wea Rev, 1987, 115(7): 1 407-1 436.
|
[8] |
单幸, 周顺武, 王美蓉, 等. 在ENSO不同位相下青藏高原春季感热对华南盛夏降水的影响[J]. 热带气象学报, 2020, 36(1): 60-71.
|
[9] |
杜新观, 余锦华. ENSO发展年与衰减年夏季环境要素对热带气旋生成频数变化的贡献[J]. 热带气象学报, 2020, 36(2): 244-253.
|
[10] |
HENDON H H, WHEELER M C, ZHANG C. Seasonal dependence of the MJO-ENSO relationship[J]. J Climate, 2007, 20(3): 531-543.
|
[11] |
李崇银, 周亚萍. 热带大气季节内振荡与ENSO的相互关系[J]. 地球物理学报, 1994, 37(1): 17-26.
|
[12] |
李崇银, 周亚萍. 热带大气中的准双周(10~20天)振荡[J]. 大气科学, 1995, 19(4): 435-444.
|
[13] |
POHL B, MATTHEWS A J. Observed changes in the lifetime and amplitude of the Madden-Julian Oscillation associated with interannual ENSO sea surface temperature anomalies[J]. J Climate, 2007, 20(11): 2 659-2 674.
|
[14] |
KLEIN S A, SODEN B J, LAU N C. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge[J]. J Climate, 1999, 12(4): 917-932.
|
[15] |
Gualdi S, Navarra A, Tinarelli G. The interannual variability of the Madden-Julian Oscillation in an ensemble of GCM simulations[J]. Climate Dyn, 1999, 15(9): 643-658.
|
[16] |
GUSHCHINA D, DEWITTE B. Intraseasonal Tropical Atmospheric Variability Associated with the Two Flavors of El Niño[J]. Mon Wea Rev, 2012, 140(11): 3 669-3 681.
|
[17] |
MALONEY E D. The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model[J]. J Climate: 2009, 22 (3): 711-729.
|
[18] |
HUNG C S, SUI C H. A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: wave dynamics versus moistening processes[J]. J Climate, 2018, 31(10): 4 095-4 115.
|
[19] |
CHEN X, LI C, TAN Y. The influence of El Niño on MJO over the equatorial pacific[J]. Journal of Ocean University of China, 2015, 14(1): 1-8.
|
[20] |
SOBEL A, WANG S, KIM D. Moist static energy budget of the MJO during DYNAMO[J]. J Atmos Sci, 2014, 71(11): 4 276-4 291.
|
[21] |
JOHNSON R H, CIESIELSKI P E, RUPPERT J H, et al. Sounding-based thermodynamic budgets for DYNAMO[J]. J Atmos Sci, 2015, 72 (2): 598-622.
|
[22] |
TSENG K C, SUI C H, LI T. Moistening processes for Madden-Julian oscillations during DYNAMO/CINDY[J]. J Climate: 2014, 28(8): 3 041-3 058.
|
[23] |
HUFFMAN G J, BOLVIN D T, NELKIN E J, et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[M]. Satellite Rainfall Applications for Surface Hydrology, 2007, 8(1): 38-55.
|
[24] |
DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quart J R Meteor Soc, 2011, 137(656): 553-597.
|
[25] |
RAYNER N A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J Geophys Res Atmos, 2003, 108(D14)4407, dio: 10.1029/2002JD002670, 2003.
|
[26] |
LING J, BAUER P, BECHTOLD P, et al. Global versus local MJO forecast skill of the ECMWF model during DYNAMO[J]. Mon Wea Rev, 2014, 142(6): 2 228-2 247.
|
[27] |
ZHANG C, LING J. Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation[J]. J Climate, 2017, 30(9): 3 439-3 459.
|
[28] |
HSU P C, LI T. Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian Oscillation[J]. J Climate, 2012, 25(14): 4 914-4 931.
|
[29] |
YANAI M, ESBENSEN S, CHU J H. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. J Atmos Sci, 1973, 30(4): 611-627.
|
[30] |
CHEN G, WANG B. Effects of enhanced front Walker cell on the eastward propagation of the MJO[J]. J Climate, 2018, 31: 7 719-7 738.
|
[31] |
FENG J, LIU P, CHEN W, et al. Contrasting Madden-Julian Oscillation activity during various stages of EP and CP El Niños[J]. Atmos Sci Lett, 2015, 16(1): 32-37.
|
[32] |
PANG B, CHEN Z, WEN Z, et al. Impacts of two types of El Niño on the MJO during boreal winter[J]. Adv Atmos Sci, 2016, 33(8): 979-986.
|
[33] |
MARSHALL A G, ALIVES O, HENDON H H. An enhanced moisture convergence-evaporation feedback mechanism for MJO air-sea interaction[J]. J Atmos Sci, 2008, 65(3): 970-986.
|
[34] |
FINK A, SPETH P. Some potential forcing mechanisms of the year-to-year variability of the tropical convection and its intraseasonal (25-70day) variability[J]. Int J Climatol, 1997, 17(14): 1 513-1 534.
|