APPLICATION OF PLANE CALIBRATION METHOD IN OPTICAL OBSERVATION OF LIGHTNING
-
摘要: 针对闪电光学观测资料定量分析的需求,采用张正友平面标定法结合便携式平面靶标,实现了闪电外场试验中光学观测设备的现场标定,为消除光学系统成像畸变对闪电通道特征分析的影响提供了一种便捷的途径。使用此方法对广州高建筑物雷电观测站(TOLOG)的6套闪电光学观测设备进行了标定,结果表明:光学观测设备搭载同类型镜头时,焦距越短图像的畸变越明显; 图像中视线与光轴的夹角越大,径向畸变的影响越明显,采用鱼眼镜头获得的闪电通道图像在靠近边缘的位置畸变的影响会超过25%;通过对配备焦距为8 mm鱼眼镜头的单反相机以及配备焦距为8 mm广角镜头的高速摄像机同时获取的闪电光学同步资料进行畸变校正后,发现获取的图像畸变校正前后闪电通道总体长度差异分别为12.9%和4.5%;经过畸变校正后不同设备获取的闪电通道图像比原图拥有更好的一致性。Abstract: This study is aimed to quantitatively analyze the observational data of various optical equipment at the observation station of the Tall-Object Lightning Observatory in Guangzhou (TOLOG), and also realize the on-site calibration of the lightning optical observation equipment in field tests. We adopted the plane calibration method and calibrated the six types of lightning optical observation equipment using a portable plane calibration target. The results showed that the shorter the focal length of the lens, the greater the distortion coefficient. In the image, the influence of radial distortion was also positively associated with the angle between the line of sight and the optical axis. The distortion of the edge of the lightning channel captured by fish eye lens would be more than 25%. After performing distortion correction on the lightning optical data collected by the Nikon SLR D7100 camera equipped with a Nikon 8 mm fisheye lens and a high-speed camera equipped with a Computar 8 mm wide-angle lens, we found that the total length of the lightning channel before and after image distortion correction differed by 12.89% and 4.45%, respectively. It showed that the distortion caused by the focal length and the type of lens had different effects on the lightning channel image. After distortion correction, however, the shape and length of the lightning channel obtained by different optical devices had a good consistency. This research provides a convenient method to eliminate the influence of optical system imaging distortion on the analysis of lightning channel characteristics.
-
表 1 TOLOG闪电光学观测设备的标定参数
光学设备编号 镜头类型 焦距(mm) 畸变系数 内部参数 F k1 k2 u0 v0 fx fy SA3 广角镜头 8 -0.162 0.094 509 481 485 488 SAZ 14 -0.078 0.039 517 498 716 718 SA5 20 -0.106 0.087 517 514 1026 1030 D7100-20 20 -0.099 0.051 2 451 1 674 4 237 4 226 D7100-8 鱼眼镜头 8 -0.283 0.060 2 387 1 566 2 073 2 068 D7100-16 16 -0.109 0.088 2 987 2 041 3 958 3 971 -
[1] 郄秀书, 张其林, 袁铁, 等. 雷电物理学[M]. 北京: 科学出版社, 2013. [2] SCHONLAND, B F J., MALAN, D J J, COLLENS, H. 1935 Progressive lightning Ⅱ[M], Proc. R. Soc. London, Ser. A, 152, 595 625, doi: 10.1098/rspa.1935.0210. [3] BERGER, K, VOGELSANGER E. Photographische Blitzuntersuchungen der Jahre 1955-1965 a uf dem Monte San Salvatore[J]. Bull Schweiz Elektrotech Ver, 57, 599 - 620. [4] LU W, CHEN L, MA Y, et al, Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader[J]. Geophys Res Lett, 2013, 40(20): 5 531-5 535. [5] 马颂德, 张正友. 计算机视觉——理论与算法基础[M]. 北京: 科学出版社, 1998. [6] ABDEL-AZIZ Y I, KARARA H M. Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in CloseRange Photogrammetry[J]. Photogrammetric Engineering & Remote Sensing, 81(2): 103-107. [7] STURM P F, MAYBANK S J. On Plane-Based Camera Calibration: A General Algorithm, Singularities, Applications[C]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition, 1999. [8] TSAI R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J]. 1987, RA3(4): 323-344. [9] 孟晓桥, 胡占义. 摄像机自标定方法的研究与进展[J]. 自动化学报, 2003, 29(1): 110-124. [10] ZHANG Z Y. A flexible new technique for camera calibration[R]. Microsoft Corporation, NSR-TR-98-71, 1998. [11] ZHANG Z Y. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations[C]//Proceedings of IEEE International Conference on Computer Vision, Corfu, Greece, Sep 20-27, 1999, 1: 1-8. [12] 吴福朝. 计算机视觉中的数学方法[M]. 北京: 科学出版社, 2008: 46-52. [13] 杨必武, 郭晓松. 摄像机镜头非线性畸变校正方法综述[J]. 中国图象图形学报, 2005, 10(3): 269-274. DOI:10.3969/j.issn.1006- 8961.2005.03.001. [14] BROWN D C. Close-range camera calibration[J]. Photogrammetric Engineering, 1971, 37(8): 855-866. [15] 张广军. 视觉测量[M]. 北京. 科学出版社, 2008: 34-42. [16] WEI G, MA S. Implicit and explicit camera calibration: Theory and experiments[J]. Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5): 469-480 [17] 余明浪, 魏振忠, 孙军华. 基于柔性平面靶标的摄像机现场标定方法[J]. 北京航空航天大学学报, 2009(3): 84-87. [18] HARRIS C, STEPHENS M. A Combined Corner and Edge Detection[C]//InProc. 4th Alvey Vision Conel988: 189-192. [19] WEI G Q, MA S D. Implicit and Explicit Camera Calibration: Theory and Experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5): 469-480. [20] 吕伟涛, 陈绿文, 马颖, 等. 广州高建筑物雷电观测与研究10年进展[J]. 应用气象学报, 2020, 31(2): 129-145. DOI: 10.11898/1001- 7313.20200201 [21] 武斌, 吕伟涛, 齐奇, 等. 双向先导正端突然延展现象的高速摄像观测[J]. 应用气象学报, 2020, 31(2): 146-155. DOI: 10.11898/1001- 7313.20200202 [22] 齐奇, 吕伟涛, 武斌, 等. 广州两座高建筑物上闪击距离的二维光学观测[J]. 应用气象学报, 2020, 31(2): 156-164. DOI: 10.11898/1001- 7313.20200203 [23] QI Q, LU W, MA Y, et al. High-speed video observations of the fine structure of a natural negative stepped leader at close distance[J]. Atmospheric Research, 2016, 178-179: 260-267. [24] WU B, LYU W, QI Q, et al. Synchronized Two-Station Optical and Electric Field Observations of Multiple Upward Lightning Flashes Triggered by a 310-kA +CG Flash[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 1 050-1 063. [25] QI Q, LYU W, MA Y, et al. High-speed video observations of natural lightning attachment process with framing rates up to half a million frames per second[J]. Geophysical Research Letters, 2019, 46(12): 12 580-12 587. [26] 迟泽英, 陈文建. 应用光学与光学设计基础[M]. 北京: 高等教育出版社, 2013. [27] WILLETT J, LE VINE D, IDONE V. Lightning return stroke current waveforms aloft from measured field change, current, and channel geometry[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D7): D07305.