ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海温盐流数值产品构建及评估

谢波涛 尹汉军 朱宇航 彭世球 李毅能 程高磊

谢波涛, 尹汉军, 朱宇航, 彭世球, 李毅能, 程高磊. 南海温盐流数值产品构建及评估[J]. 热带气象学报, 2022, 38(4): 529-540. doi: 10.16032/j.issn.1004-4965.2022.048
引用本文: 谢波涛, 尹汉军, 朱宇航, 彭世球, 李毅能, 程高磊. 南海温盐流数值产品构建及评估[J]. 热带气象学报, 2022, 38(4): 529-540. doi: 10.16032/j.issn.1004-4965.2022.048
XIE Botao, YIN Hanjun, ZHU Yuhang, PENG Shiqiu, LI Yineng, CHENG Gaolei. THE GENERATION AND ASSESSMENT OF TEMPERATURE-SALINITY-CURRENT NUMERICAL DATASET IN THE SOUTH CHINA SEA[J]. Journal of Tropical Meteorology, 2022, 38(4): 529-540. doi: 10.16032/j.issn.1004-4965.2022.048
Citation: XIE Botao, YIN Hanjun, ZHU Yuhang, PENG Shiqiu, LI Yineng, CHENG Gaolei. THE GENERATION AND ASSESSMENT OF TEMPERATURE-SALINITY-CURRENT NUMERICAL DATASET IN THE SOUTH CHINA SEA[J]. Journal of Tropical Meteorology, 2022, 38(4): 529-540. doi: 10.16032/j.issn.1004-4965.2022.048

南海温盐流数值产品构建及评估

doi: 10.16032/j.issn.1004-4965.2022.048
基金项目: 

广东省重点工程 2019BT2H594

南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0303

广西重点研发计划 桂科AB18294047

深水浮式平台一体化在线监测与分析软件集成系统研制 LSZX-2020-HN-05-04

海上油气田精细化环境预报与参数区划关键技术 YXKY-ZX 07 2020

南海北部内波区划及工程参数研究 YXKY-ZX 10 2021

中国科学院空间科学战略性先导科技专项 XDA15020901

广东省重点领域研发计划项目 2019B111101002

广西北部湾海洋灾害研究重点实验室(北部湾大学)开放课题 2021KF01

详细信息
    通讯作者:

    彭世球,男,广西壮族自治区人,研究员,博士,主要从事海洋数值模拟与资料同化。E-mail:speng@scsio.ac.cn

  • 中图分类号: P456.7

THE GENERATION AND ASSESSMENT OF TEMPERATURE-SALINITY-CURRENT NUMERICAL DATASET IN THE SOUTH CHINA SEA

  • 摘要: 基于区域海洋模式ROMS构造了一套覆盖中国南海的40年(1980—2019年)温盐流数值产品OCEAN_SCS。OCEAN_SCS的变量包含了温度、盐度、流速、流向以及海表高度。OCEAN_SCS的水平空间分辨率为0.1°×0.1°,垂向分层40层(0~5 000 m),时间分辨率为1小时,包含潮汐信息。利用独立的观测资料对OCEAN_SCS进行了初步评估,评估对象包括温度、盐度、海表高度、海流、潮位和增水。在不包含资料同化的前提下,OCEAN_SCS的模拟精度达到了较高的水准。OCENA_SCS的构建将为南海海洋环境的研究提供数据支撑,并服务于南海海洋环境保障。

     

  • 图  1  模式区域范围及模式地形

    图  2  模式模拟的南海区域四个季节的气候态海表流场

    a. 春季;b. 夏季;c.秋季;d. 冬季。

    图  3  模式模拟(a、c、e、g)和卫星观测(b、d、f、h)气候态季节平均海表高度异常

    a、b. 春季;c、d. 夏季;e、f. 秋季;g、h. 冬季。

    图  4  数据产品海表高度与卫星观测海表高度相关系数分布(a)、卫星观测(b)和数据产品(c)的海表高度标准偏差分布

    图  5  闸坡、北海、东方和汕尾潮位站分布以及1991年11号强台风“弗雷特”和1995年9号强台风“肯特”路径图

    图  6  1991年11号强台风“弗雷特”经过南海北部广东沿岸期间潮位站闸坡(a)、北海(b)、东方(c)和汕尾(d)数据产品与观测天文潮位和风暴潮增水时间序列

    图  7  1995年9号强台风肯特经过南海北部广东沿岸期间潮位站闸坡(a)、北海(b)、东方(c)和汕尾(d)数据产品与观测天文潮位和风暴潮增水时间序列

    图  8  数据产品OCEAN_SCS和美国全球再分析数据集HYCOM与中国科学院南海海洋研究所自主开放航次观测温度(a)和盐度(b)均方根误差剖面

    图  9  数据产品与卫星观测地转流对比的流速平均误差(a)、流向平均误差(b)和流速相对误差(c)分布以及卫星观测地转流速平均态分布(d)

    表  1  数据产品模拟的1988—1997年潮位站闸坡、北海、东方和汕尾总水位平均误差和增水平均误差。

    站点 总水位平均误差/m 增水平均误差/m
    闸坡站 0.24 0.11
    北海站 0.31 0.15
    东方站 0.23 0.11
    汕尾站 0.16 0.11
    下载: 导出CSV
  • [1] QU T D. Upper-layer circulation in the South China Sea[J]. J Phys Oceanogr, 2000, 30(6): 1 450-1 460.
    [2] YANG H Y, WU L X. Trends of upper-layer circulation in the South China Sea during 1959-2008[J]. J Geophys Res-Oceans, 2012, 117: C08037, doi: 10.1029/2012jc008068.
    [3] WANG D X, LIU Q Y, XIE Q, et al. Progress of regional oceanography study associated with western boundary current in the South China Sea[J]. Chin Sci Bull, 2013, 58(11): 1 205-1 215.
    [4] WANG D X, LIU Q Y, HUANG R X, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean assimilation product[J]. Geophys Res Lett, 2006, 33(14): L14605, doi: 10.1029/2006gl026316.
    [5] QU T D, SONG Y T, YAMAGATA T. An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate[J]. Dynam Atmos Oceans, 2009, 47(1-3): 3-14.
    [6] KUO N J, ZHENG Q, CHUNG R H. Satellite observation of upwelling along the western coast of the South China Sea[J]. Remote Sens Environ, 2000, 74(3): 463-470.
    [7] XIE S, XIE Q, WANG D X, et al. Summer upwelling in the South China Sea and its role in regional climate variations[J]. J Geophys Res., 2003, 108: 3261, https://doi.org/10.1029/2003JC001867.
    [8] FARMER D, LI Q, PARK J H. Internal wave observations in the South China Sea: The role of rotation and non-linearity[J]. Atmos Ocean, 2009, 47(4): 267-280.
    [9] JACKSON C R. An empirical model for estimating the geographic location of nonlinear internal solitary waves[J]. J Atmos Oceanic Technol, 2009, 26(10): 2 243-2 255.
    [10] LI J X, ZHANG R, JIN B. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data[J]. Ocean Sci, 2011, 7(5): 661-669.
    [11] CHEN G X, HOU Y J, CHU X Q. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. J Geophys Res Oceans, 2011, 116: C06018, https://doi.org/10.1029/2010JC006716.
    [12] CHEN G X, GAN J P, XIE Q, et al. Eddy heat and salt transports in the South China Sea and their seasonal modulations[J]. J Geophys Res Oceans, 2012, 117: C05021, https://doi.org/10.1029/2011JC007724.
    [13] CARTON J A, CHEPURIN G, CAO X H, et al. A simple ocean data assimilation analysis of the global upper ocean 1950-95 Part I: Methodology[J]. J Phys Oceanogr, 2000, 30(2): 294-309.
    [14] CARTON J A, CHEPURIN G, CAO X H. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part Ⅱ: Results[J]. J Phys Oceanogr, 2000, 30(2): 311-326.
    [15] CUMMINGS J A, SMEDSTAD O M. Variational data assimilation for the global ocean[M]//LEWIS J M, NAVON I M, ZUPANSKI M, et al. Data assimilation for atmospheric, oceanic and hydrologic applications (Vol Ⅱ). Berlin Heidelberg: Springer, 2013: 303-343.
    [16] HAN G J, LI WEI, ZHANG X F, et al. A regional ocean reanalysis system for coastal waters of China and adjacent seas[J]. Adv Atmos Sci, 2011, 28(3): 682-690.
    [17] HAN G J, FU H L, ZHANG X F, et al. A Global Ocean Reanalysis Product in the China Ocean Reanalysis(CORA) Project[J]. Adv Atmos Sci, 2013, 30(6): 1 621-1 631.
    [18] ZENG X Z, PENG S Q, LI Z J, et al. A reanalysis dataset of the South China Sea[J]. Scientific Data, 2014, 1: 140052
    [19] SHCHEPETKIN A F, MCWILLIAMS J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. J Geophys Res-Oceans, 2003, 108, C3, doi: 10.1029/2001jc001047.
    [20] SHCHEPETKIN A F, MCWILLIAMS J C. The regional oceanic modeling system (ROMS): asplit-explicit, free-surface, topographyfollowing-coordinate oceanic model[J]. Ocean Model, 2005, 9(4): 347-404.
    [21] PENVEN P, DEBREU L, MARCHESIELLO P, et al. Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system[J]. Ocean Modelling, 2006, 12(1-2): 157-187.
    [22] DEBREU L P, MARCHESIELLO P, PENVEN P, et al. Two way nesting in split explicit ocean models: Algorithms, implementation and validation[J]. Ocean Modellling, 2012, 49-50: 1-21.
    [23] PELIZ A, DUBERT J, HAIDVOGEL D B, et al. Generation and unstable evolution of a density-driven Eastern Poleward Current: The Iberian Poleward Current[J]. J Geophys Res-Oceans, 2003, 108: C8, doi: 10.1029/2002jc001443.
    [24] BUDGELL W P. Numerical simulation of ice-ocean variability in the Barents Sea region towards dynamical downscaling[J]. Ocean Dynam, 2005, 55: 370-387.
    [25] WARNER J C, GEYER W R, LERCZAK J A. Numerical modeling of an estuary: A comprehensive skill assessment[J]. J Geophys ResOceans, 2005, 110, C5, doi: 10.1029/2004jc002691.
    [26] WARNER J C, SHERWOOD C R, ARANGO H G, et al. Performance of four turbulence closure models in implemented using a generic length scale method[J]. Ocean Model, 2005, 8: 81-113.
    [27] WILKIN J L, ARANGO H G, HAIDVOGEL D B, et al. A regional ocean modeling system for the Long-term Ecosystem Observatory[J]. J Geophys Res-Oceans, 2005, 110(C6): 002218, doi: 10.1029/2003jc002218.
    [28] CHAO Y, LI Z, FARRARA J D, et al. Synergistic applications of autonomous underwater vehicles and the regional ocean modeling system in coastal oceanforecasting[J]. Limnol Oceanogr, 2008, 53: 2251-2263.
    [29] CHAI F, LIU G M, XUE H J, et al. Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physicalbiogeochemical modeling study[J]. J Oceanogr, 2009, 65(5): 703-720.
    [30] NAN F, XUE H J, CHAI F, et al. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades[J]. J Climate, 2013, 26: 8 097-8 110.
    [31] WANG G H, LING Z, WU R G, et al. Impacts of the Madden-Julian Oscillation on the summer South China Sea Ocean circulation and temperature[J]. J Climate, 2013, 26: 8 084-8 096.
    [32] FAN W, SONG J B, LI S. A numerical study on seasonal variations of the thermocline in the South China Sea based on the ROMS[J]. Acta Oceanol Sin, 2014, 33(7): 56-64.
    [33] OLSON C J, BECKER J J, SANDWELL D T. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS[C]//AGU Fall Meeting Abstracts 2014.
    [34] LARGE W G, MCWILLIAMS J C, ONEY S C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363-403.
    [35] CARTON J A, CHEPURIN G A, CHEN L. SODA3: a new ocean climate reanalysis[J]. J Climate, 2018, 31: 6 967-6 983, DOI: 10.1175/JCLI-D-18-0149.1.
    [36] CARTON J A, CHEPURIN G A, CHEN L, et al. Improved global net surface heat flux[J]. J Geophys Res, 2018, 123: 3 144-3 163, DOI: 10.1002/2017JC013137.
    [37] CARTON J A, PENNY S G, KALNAY E. Temperature and salinity variability in SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993-2015[J]. J Climate, 2019, 32: 2277-2293, DOI: 10.1175/JCLI-D-18-0605.1
    [38] HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 hourly data on pressure levels from 1959 to present[Z]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018, DOI: 10.24381/cds.adbb2d47.
    [39] HOLLAND G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Mon Wea Rev, 1980, 108(): 1 212-1 218.
    [40] LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds[J]. J Phys Oceanogr, 1981, 11(3): 324-336.
    [41] PENG S, LI Y. A parabolic model of drag coefficient for storm surge simulation in the South China Sea[J]. Scientific Reports, 2015, 5(1): 15496, doi: 10.1038/srep/5496.
    [42] EGBERT G D, EROFEEVA S Y. Efficient inverse modeling of barotropic ocean tides[J]. J Atmos Oceanic Technol, 2002, 19(2): 183-204.
    [43] LIU Q Y, KANEKO A, SU J L. Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2008, 64(5): 753-762.
    [44] PAWLOWICZ R, BEARDSLEY B, LENTZ S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers and Geosciences, 2002, 28(8): 929-937.
    [45] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Adv Atmos Sci, 2021, 38(4): 690-699, doi: 10.1007/s00376-020-0211-7.
    [46] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Oceanic Technol, 2014, 31(2): 287-301, doi: 10.1175/JTECH-D-12-00119.1
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  71
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-06-08
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2022-08-20

目录

    /

    返回文章
    返回