THE GENERATION AND ASSESSMENT OF TEMPERATURE-SALINITY-CURRENT NUMERICAL DATASET IN THE SOUTH CHINA SEA
-
摘要: 基于区域海洋模式ROMS构造了一套覆盖中国南海的40年(1980—2019年)温盐流数值产品OCEAN_SCS。OCEAN_SCS的变量包含了温度、盐度、流速、流向以及海表高度。OCEAN_SCS的水平空间分辨率为0.1°×0.1°,垂向分层40层(0~5 000 m),时间分辨率为1小时,包含潮汐信息。利用独立的观测资料对OCEAN_SCS进行了初步评估,评估对象包括温度、盐度、海表高度、海流、潮位和增水。在不包含资料同化的前提下,OCEAN_SCS的模拟精度达到了较高的水准。OCENA_SCS的构建将为南海海洋环境的研究提供数据支撑,并服务于南海海洋环境保障。Abstract: A 40-year (1980—2019) temperature-salinity-current numerical dataset of the South China Sea (SCS) called OCEAN_SCS has been generated based on Regional Ocean Model System (ROMS) in this study. The variables of OCEAN_SCS includes the temperature, salinity, current speed, current direction and sea surface height (SSH). The horizontal resolution, vertical levels and temporal resolution of the OCEAN_SCS is 0.1° × 0.1°, 40 and 1hour, respectively, and tidal information is included in the OCEAN_SCS. The independent observations are used for the validation of OCEAN_SCS including the accuracy of temperature, salinity, SSH, current, tide level and surge. The accuracy of OCEAN_SCS reaches a high level without data assimilation in the generation. The OCEAN_SCS will provide dataset support for the research of marine environment in the SCS, and serve ocean environment support in the SCS.
-
Key words:
- South China Sea /
- Oceanic numerical dataset /
- ROMS
-
表 1 数据产品模拟的1988—1997年潮位站闸坡、北海、东方和汕尾总水位平均误差和增水平均误差。
站点 总水位平均误差/m 增水平均误差/m 闸坡站 0.24 0.11 北海站 0.31 0.15 东方站 0.23 0.11 汕尾站 0.16 0.11 -
[1] QU T D. Upper-layer circulation in the South China Sea[J]. J Phys Oceanogr, 2000, 30(6): 1 450-1 460. [2] YANG H Y, WU L X. Trends of upper-layer circulation in the South China Sea during 1959-2008[J]. J Geophys Res-Oceans, 2012, 117: C08037, doi: 10.1029/2012jc008068. [3] WANG D X, LIU Q Y, XIE Q, et al. Progress of regional oceanography study associated with western boundary current in the South China Sea[J]. Chin Sci Bull, 2013, 58(11): 1 205-1 215. [4] WANG D X, LIU Q Y, HUANG R X, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean assimilation product[J]. Geophys Res Lett, 2006, 33(14): L14605, doi: 10.1029/2006gl026316. [5] QU T D, SONG Y T, YAMAGATA T. An introduction to the South China Sea throughflow: Its dynamics, variability, and application for climate[J]. Dynam Atmos Oceans, 2009, 47(1-3): 3-14. [6] KUO N J, ZHENG Q, CHUNG R H. Satellite observation of upwelling along the western coast of the South China Sea[J]. Remote Sens Environ, 2000, 74(3): 463-470. [7] XIE S, XIE Q, WANG D X, et al. Summer upwelling in the South China Sea and its role in regional climate variations[J]. J Geophys Res., 2003, 108: 3261, https://doi.org/10.1029/2003JC001867. [8] FARMER D, LI Q, PARK J H. Internal wave observations in the South China Sea: The role of rotation and non-linearity[J]. Atmos Ocean, 2009, 47(4): 267-280. [9] JACKSON C R. An empirical model for estimating the geographic location of nonlinear internal solitary waves[J]. J Atmos Oceanic Technol, 2009, 26(10): 2 243-2 255. [10] LI J X, ZHANG R, JIN B. Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data[J]. Ocean Sci, 2011, 7(5): 661-669. [11] CHEN G X, HOU Y J, CHU X Q. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. J Geophys Res Oceans, 2011, 116: C06018, https://doi.org/10.1029/2010JC006716. [12] CHEN G X, GAN J P, XIE Q, et al. Eddy heat and salt transports in the South China Sea and their seasonal modulations[J]. J Geophys Res Oceans, 2012, 117: C05021, https://doi.org/10.1029/2011JC007724. [13] CARTON J A, CHEPURIN G, CAO X H, et al. A simple ocean data assimilation analysis of the global upper ocean 1950-95 Part I: Methodology[J]. J Phys Oceanogr, 2000, 30(2): 294-309. [14] CARTON J A, CHEPURIN G, CAO X H. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part Ⅱ: Results[J]. J Phys Oceanogr, 2000, 30(2): 311-326. [15] CUMMINGS J A, SMEDSTAD O M. Variational data assimilation for the global ocean[M]//LEWIS J M, NAVON I M, ZUPANSKI M, et al. Data assimilation for atmospheric, oceanic and hydrologic applications (Vol Ⅱ). Berlin Heidelberg: Springer, 2013: 303-343. [16] HAN G J, LI WEI, ZHANG X F, et al. A regional ocean reanalysis system for coastal waters of China and adjacent seas[J]. Adv Atmos Sci, 2011, 28(3): 682-690. [17] HAN G J, FU H L, ZHANG X F, et al. A Global Ocean Reanalysis Product in the China Ocean Reanalysis(CORA) Project[J]. Adv Atmos Sci, 2013, 30(6): 1 621-1 631. [18] ZENG X Z, PENG S Q, LI Z J, et al. A reanalysis dataset of the South China Sea[J]. Scientific Data, 2014, 1: 140052 [19] SHCHEPETKIN A F, MCWILLIAMS J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. J Geophys Res-Oceans, 2003, 108, C3, doi: 10.1029/2001jc001047. [20] SHCHEPETKIN A F, MCWILLIAMS J C. The regional oceanic modeling system (ROMS): asplit-explicit, free-surface, topographyfollowing-coordinate oceanic model[J]. Ocean Model, 2005, 9(4): 347-404. [21] PENVEN P, DEBREU L, MARCHESIELLO P, et al. Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system[J]. Ocean Modelling, 2006, 12(1-2): 157-187. [22] DEBREU L P, MARCHESIELLO P, PENVEN P, et al. Two way nesting in split explicit ocean models: Algorithms, implementation and validation[J]. Ocean Modellling, 2012, 49-50: 1-21. [23] PELIZ A, DUBERT J, HAIDVOGEL D B, et al. Generation and unstable evolution of a density-driven Eastern Poleward Current: The Iberian Poleward Current[J]. J Geophys Res-Oceans, 2003, 108: C8, doi: 10.1029/2002jc001443. [24] BUDGELL W P. Numerical simulation of ice-ocean variability in the Barents Sea region towards dynamical downscaling[J]. Ocean Dynam, 2005, 55: 370-387. [25] WARNER J C, GEYER W R, LERCZAK J A. Numerical modeling of an estuary: A comprehensive skill assessment[J]. J Geophys ResOceans, 2005, 110, C5, doi: 10.1029/2004jc002691. [26] WARNER J C, SHERWOOD C R, ARANGO H G, et al. Performance of four turbulence closure models in implemented using a generic length scale method[J]. Ocean Model, 2005, 8: 81-113. [27] WILKIN J L, ARANGO H G, HAIDVOGEL D B, et al. A regional ocean modeling system for the Long-term Ecosystem Observatory[J]. J Geophys Res-Oceans, 2005, 110(C6): 002218, doi: 10.1029/2003jc002218. [28] CHAO Y, LI Z, FARRARA J D, et al. Synergistic applications of autonomous underwater vehicles and the regional ocean modeling system in coastal oceanforecasting[J]. Limnol Oceanogr, 2008, 53: 2251-2263. [29] CHAI F, LIU G M, XUE H J, et al. Seasonal and interannual variability of carbon cycle in South China Sea: A three-dimensional physicalbiogeochemical modeling study[J]. J Oceanogr, 2009, 65(5): 703-720. [30] NAN F, XUE H J, CHAI F, et al. Weakening of the Kuroshio intrusion into the South China Sea over the past two decades[J]. J Climate, 2013, 26: 8 097-8 110. [31] WANG G H, LING Z, WU R G, et al. Impacts of the Madden-Julian Oscillation on the summer South China Sea Ocean circulation and temperature[J]. J Climate, 2013, 26: 8 084-8 096. [32] FAN W, SONG J B, LI S. A numerical study on seasonal variations of the thermocline in the South China Sea based on the ROMS[J]. Acta Oceanol Sin, 2014, 33(7): 56-64. [33] OLSON C J, BECKER J J, SANDWELL D T. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS[C]//AGU Fall Meeting Abstracts 2014. [34] LARGE W G, MCWILLIAMS J C, ONEY S C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363-403. [35] CARTON J A, CHEPURIN G A, CHEN L. SODA3: a new ocean climate reanalysis[J]. J Climate, 2018, 31: 6 967-6 983, DOI: 10.1175/JCLI-D-18-0149.1. [36] CARTON J A, CHEPURIN G A, CHEN L, et al. Improved global net surface heat flux[J]. J Geophys Res, 2018, 123: 3 144-3 163, DOI: 10.1002/2017JC013137. [37] CARTON J A, PENNY S G, KALNAY E. Temperature and salinity variability in SODA3, ECCO4r3, and ORAS5 ocean reanalyses, 1993-2015[J]. J Climate, 2019, 32: 2277-2293, DOI: 10.1175/JCLI-D-18-0605.1 [38] HERSBACH H, BELL B, BERRISFORD P, et al. ERA5 hourly data on pressure levels from 1959 to present[Z]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018, DOI: 10.24381/cds.adbb2d47. [39] HOLLAND G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Mon Wea Rev, 1980, 108(): 1 212-1 218. [40] LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds[J]. J Phys Oceanogr, 1981, 11(3): 324-336. [41] PENG S, LI Y. A parabolic model of drag coefficient for storm surge simulation in the South China Sea[J]. Scientific Reports, 2015, 5(1): 15496, doi: 10.1038/srep/5496. [42] EGBERT G D, EROFEEVA S Y. Efficient inverse modeling of barotropic ocean tides[J]. J Atmos Oceanic Technol, 2002, 19(2): 183-204. [43] LIU Q Y, KANEKO A, SU J L. Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2008, 64(5): 753-762. [44] PAWLOWICZ R, BEARDSLEY B, LENTZ S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers and Geosciences, 2002, 28(8): 929-937. [45] LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Adv Atmos Sci, 2021, 38(4): 690-699, doi: 10.1007/s00376-020-0211-7. [46] YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. J Atmos Oceanic Technol, 2014, 31(2): 287-301, doi: 10.1175/JTECH-D-12-00119.1 -