IMPACT OF WIND INPUT PARAMETERIZATIONS ON WAVE SIMULATION IN PEARL RIVER ESTUARY REGION
-
摘要: 珠江口是粤港澳大湾区的核心区域,台风、风暴潮和巨浪等海洋灾害频发,对沿岸人民的生命财产安全构成严重威胁。准确的高分辨率波浪模拟/预报对区域经济建设和防灾减灾具有重要意义。波浪预报/模拟的质量很大程度上取决于风能输入的误差。本研究基于WAVEWATCH Ⅲ(WW3)的南海-珠江口双重嵌套精细化海浪模式,探讨不同的风场产品与风能输入参数方案组合对珠江口波浪动力过程模拟的影响,确定最优的风场和参数方案组合。ERA5风场更适合珠江口海域的风浪模拟,其模式结果略优于采用CFSR风场的模式结果。ERA5风场+T500方案的组合对珠江口波高变化过程的模拟效果最好,ERA5风场+T471方案的组合次之,ERA5风场+ST6方案再次之。CFSR风场与T471f参数方案最为适配,其结果稍差于ERA5风场+ST6参数方案。T500方案调整高风速下的风能输入和涌浪对风能输入的反馈作用,并考虑水深引起的波浪破碎效应,更适合水深限制的珠江口浅水区域。另外,WW3模式开关ST4的参数方案的表现优于开关ST6的参数方案。
-
关键词:
- 波浪 /
- 风能输入参数方案 /
- 珠江口 /
- WAVEWATCH Ⅲ
Abstract: The Pearl River Estuary (PRE) locates in the core region of the Guangdong-Hong Kong-Macao Greater Bay Area, where typhoons, storm surge, and huge wave occur frequently and bring great threats to human life and property. Accurate high-resolution wave forecasting / simulation is crucial to regional economic development and disaster prevention and mitigation. The quality of wave forecasting/simulation depends largely on wind input parameterization. Thus, we build up a nested South China Sea-PRE wave model using the WAVEWATCH Ⅲ model v6.07 to evaluate the performance of different wind reanalysis and wind input parameterization on the wave simulation in the PRE region. Compared with the CFSR wind data, ERA5 wind data can help better simulate the surface wave in the PRE region. ERA5 wind data combined with the T500 parameterization provides the best results, followed by the ERA5 + T471 combination. The T500 parameterization tunes the wind input for high winds and includes depth-induced breaking, and thus may be more appropriate for depth-limited conditions. For the CFSR wind data, T471f appears to be the optimal parameterization. However, the results produced by the CFSR + T471f combination are not better than those of ERA5+ST6 combination in terms of both root mean squared error and mean absolute error. Moreover, the ST4 source package performs better than the ST6 source package.-
Key words:
- ocean surface wave /
- wind input parameterization /
- Pearl River Estuary /
- WAVEWATCH Ⅲ
-
表 1 WW3模式风能输入项参数方案参数表
参数 WW3变量名 T471 T471f T500 zu ZWND 10.0 10.0 10.0 α0 ALPHA0 0.009 5 0.009 5 0.009 5 βmax BETAMAX 1.43 1.33 1.52 pin SINTHP 2 2 2 zα ZALF 0.006 0.006 0.006 Su TAUWSHELTER 0.3 0.3 1.0 S1 SWELLF 0.66 0.66 0.8 S2 SWELLF2 -0.018 -0.018 -0.018 S3 SWELLF3 0.022 0.022 0.015 Rec SWELLF4 1.5×105 1.5×105 1.0×105 S5 SWELLF5 1.2 1.2 1.2 S6 SWELLF6 0.0 0.0 0.0 S7 SWELLF7 3.6×105 3.6×105 0.0 zr Z0RAT 0.04 0.04 0.04 z0, max Z0MAX 1.002 1.002 1.002 表 2 不同的风场产品与风能输入参数方案组合敏感性试验设置
试验名称 试验内容 试验1 ERA5+T471 以ERA5风场驱动WW3模式,风能输入和耗散参数方案为T471 试验2 CFSR+T471f 以CFSR风场驱动WW3模式,风能输入和耗散参数方案为T471f 试验3 ERA5+ST6 以ERA5风场驱动WW3模式,风能输入和耗散参数方案采用开关ST6的默认参数方案 试验4 CFSR+ST6 以CFSR风场驱动WW3模式,风能输入和耗散参数方案采用开关ST6的默认参数方案 试验5 ERA5+T500 以ERA5风场驱动WW3模式,风能输入和耗散参数方案为T500 试验6 CFSR+T500 以CFSR风场驱动WW3模式,风能输入和耗散参数方案为T500 表 3 ERA5和CFSR再分析风场与2014年7—9月香港站和澳门站风场观测对比
站位 分量 再分析产品 平均偏差/m 均方根误差/m 相关系数 香港站 纬向 ERA5 1.766 2.307 0.810 风速 CFSR 1.877 2.407 0.791 经向 ERA5 1.505 1.909 0.678 风速 CFSR 1.621 2.095 0.634 澳门站 纬向 ERA5 1.270 1.715 0.855 风速 CFSR 1.363 1.845 0.848 经向 ERA5 1.301 1.696 0.787 风速 CFSR 1.508 2.003 0.720 表 4 不同风场与参数方案组合在珠江口海域的有效波高模拟结果与观测对比
试验 平均偏差/m 平均绝对误差/m 均方根误差/m 相关系数 P1 P2 P1 P2 P1 P2 P1 P2 试验1 ERA5+T471 -0.105 6 -0.089 3 0.257 5 0.198 0 0.281 5 0.245 1 0.950 0 0.970 0 试验2 CFSR+T471f -0.026 0 -0.002 3 0.256 3 0.213 8 0.320 5 0.325 1 0.945 1 0.954 9 试验3 ERA5+ST6 -0.189 3 -0.179 8 0.302 7 0.252 1 0.312 9 0.291 3 0.951 3 0.968 4 试验4 CFSR+ST6 -0.080 7 -0.067 5 0.305 3 0.248 3 0.380 7 0.359 4 0.940 5 0.952 2 试验5 ERA5+T500 -0.064 9 -0.052 9 0.240 7 0.182 8 0.267 9 0.235 0 0.952 1 0.971 1 试验6 CFSR+T500 0.037 2 0.055 7 0.256 1 0.219 6 0.342 4 0.350 2 0.946 1 0.955 6 -
[1] SEMEDO A, SUŠELJ K, RUTGERSSON A, et al. A global view on the wind sea and swell climate and variability from ERA-40[J]. J Climate, 2011, 24(5): 1 461-1 479. doi: 10.1175/2010JCLI3718.1 [2] SOLOMON S. IPCC (2007): Climate change the physical science basis[Z]. 2007: U43D-01 [3] 魏晓琳, 李江南, 姚才, 等. 台风Krovanh(0312)及其台风浪的数值模拟[J]. 热带气象学报, 2007, 23(6): 673-678. doi: 10.3969/j.issn.1004-4965.2007.06.023 [4] 王欣睿, 娄安刚, 孙波涛. 珠江口近海海域海浪预报方法研究[J]. 海洋通报, 2009, 28(3): 113-6. doi: 10.3969/j.issn.1001-6392.2009.03.017 [5] 伍志元, 蒋昌波, 邓斌, 等. 基于WRF-SWAN耦合模式的台风"威马逊"波浪场数值模拟[J]. 海洋科学, 2018, 42(9): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201809009.htm [6] 张洪生, 辜俊波, 王海龙, 等. 利用WAVEWATCH和SWAN嵌套计算珠江口附近海域的风浪场[J]. 热带海洋学报, 2013, 32(1): 8-17. doi: 10.3969/j.issn.1009-5470.2013.01.002 [7] 邱文博, 张永合, 胡轶群, 等. 珠江口附近海域波浪场的数值计算与特征分析[J]. 海洋湖沼通报, 2019, 4: 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFB201904002.htm [8] ALDAY M, ACCENSI M, ARDHUIN F, et al. A global wave parameter database for geophysical applications. Part 3: Improved forcing and spectral resolution[J]. Ocean Modelling, 2021, 166: 101848. doi: 10.1016/j.ocemod.2021.101848 [9] KALOURAZI M Y, SIADATMOUSAVI S M, YEGANEH-BAKHTIARY A, et al. WAVEWATCH-Ⅲ source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan[J]. Oceanologia, 2021, 63(2): 194-213. doi: 10.1016/j.oceano.2020.12.001 [10] KAZEMINEZHAD M H, SIADATMOUSAVI S M. Performance evaluation of WAVEWATCH Ⅲ model in the Persian Gulf using different wind resources[J]. Ocean Dynamics, 2017, 67(7): 839-855. doi: 10.1007/s10236-017-1063-2 [11] The WAMDI Group T W. The WAM Model—A Third Generation Ocean Wave Prediction Model[J]. Journal of Physical Oceanography, 1988, 18(12): 1775-1810. doi: 10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2 [12] The WAVEWATCH Ⅲ® Development Group (WW3DG). User manual and system documentation of WAVEWATCH ⅢR version 6.07. Tech. Note 333[R]. 2019, NOAA/NWS/NCEP/MMAB, College Park, MD, USA. https://raw.githubusercontent.com/wiki/NOAA-EMC/WW3/files/manual.pdf. [13] 冯芒, 张文静, 李岩, 等. 台湾海峡及近岸区域精细化海浪数值预报系统[J]. 海洋预报, 2013, 30(2): 42-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB201302007.htm [14] LI S T, LI Y N, PENG S Q, et al. The inter-annual variations of the significant wave height in the Western North Pacific and South China Sea region[J]. Climate Dynamics, 2021, 56(9-10): 3 065-3 080. doi: 10.1007/s00382-021-05636-9 [15] ZHENG C W, LI C Y. Variation of the wave energy and significant wave height in the China Sea and adjacent waters[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 381-387. doi: 10.1016/j.rser.2014.11.001 [16] 陈璇, 郑崇伟, 刘晓光, 等. 最新版WAVEWATCH海浪模式机理简介及个例[J]. 海洋科学前沿, 2016, 3(2): 8-11. [17] MIRZAEI A, TANGANG F, JUNENG L, et al. Wave climate simulation for southern region of the South China Sea[J]. Ocean Dynamics, 2013, 63(8): 961-977. doi: 10.1007/s10236-013-0640-2 [18] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quart J Roy Meteor Soc, 2020, 146(730): 1 999-2 049. doi: 10.1002/qj.3803 [19] BELMONTE RIVAS M, STOFFELEN A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT[J]. Ocean Sci, 2019, 15(3): 831-852. doi: 10.5194/os-15-831-2019 [20] SAHA S. The NCEP Climate Forecast System Reanalysis[J]. Bull Amer Meteor Soc, 2010, 91: 1 015-1 057. doi: 10.1175/2010BAMS3001.1 [21] SAHA S, MOORTHI S, WU X, et al. The NCEP Climate Forecast System Version 2[J]. J Climate, 2014, 27(6): 2 185-2 208. [22] SU H, WEI C, JIANG S, et al. Revisiting the seasonal wave height variability in the South China Sea with merged satellite altimetry observations[J]. Acta Oceanol Sin, 2017, 36(11): 38-50. [23] ARDHUIN F, ROGERS E, BABANIN A V, et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part Ⅰ: Definition, Calibration, and Validation[J]. Journal of Physical Oceanography, 2010, 40(9): 1 917-1 941. [24] LIU Q, BABANIN A V, ROGERS W E, et al. Global Wave Hindcasts Using the Observation-Based Source Terms: Description and Validation[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(8): e2021MS002493. [25] FILIPOT J F, ARDHUIN F, BABANIN A V. A unified deep-to-shallow water wave-breaking probability parameterization[J]. J Geophy Res: Oceans, 2010, 115: co4022, doi: 10.1029/2009JC005448. [26] ROGERS W E, BABANIN A V, WANG D W. Observation-Consistent Input and Whitecapping Dissipation in a Model for WindGenerated Surface Waves: Description and Simple Calculations[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(9): 1 329- 1 346. [27] ZIEGER S, BABANIN A V, ERICK ROGERS W, et al. Observation-based source terms in the third-generation wave model WAVEWATCH [J]. Ocean Modelling, 2015, 96: 2-25. [28] The SWAN team. User MANUAL SWAN Cycle Ⅲ version 41.31A[R]. 2020, Delft University of Technology, Delft [29] AMAROUCHE K, AKPıNAR A, SORAN M B, et al. Spatial calibration of an unstructured SWAN model forced with CFSR and ERA5 winds for the Black and Azov Seas[J]. Applied Ocean Research, 2021, 117: 102962. [30] KAISER J, NOGUEIRA I C M, CAMPOS R M, et al. Evaluation of wave model performance in the South Atlantic Ocean: a study about physical parameterization and wind forcing calibration[J]. Ocean Dynamics, 2022, 72(2): 137-150. [31] KALOURAZI M Y, SIADATMOUSAVI S M, YEGANEH-BAKHTIARY A, et al. Simulating tropical storms in the Gulf of Mexico using analytical models[J]. Oceanologia, 2020, 62(2): 173-189. -