ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海台风边界层湍流小波分析

涂朝勇 赵中阔 黎伟标 陈淑敏 陈逸伦 张奡祺

涂朝勇, 赵中阔, 黎伟标, 陈淑敏, 陈逸伦, 张奡祺. 南海台风边界层湍流小波分析[J]. 热带气象学报, 2022, 38(4): 554-568. doi: 10.16032/j.issn.1004-4965.2022.050
引用本文: 涂朝勇, 赵中阔, 黎伟标, 陈淑敏, 陈逸伦, 张奡祺. 南海台风边界层湍流小波分析[J]. 热带气象学报, 2022, 38(4): 554-568. doi: 10.16032/j.issn.1004-4965.2022.050
TU Chaoyong, ZHAO Zhongkuo, LI Weibiao, CHEN Shumin, CHEN Yilun, ZHANG Aoqi. WAVELET ANALYSIS OF TURBULENCE IN BOUNDARY LAYER OF TYPHOON IN SOUTH CHINA SEA[J]. Journal of Tropical Meteorology, 2022, 38(4): 554-568. doi: 10.16032/j.issn.1004-4965.2022.050
Citation: TU Chaoyong, ZHAO Zhongkuo, LI Weibiao, CHEN Shumin, CHEN Yilun, ZHANG Aoqi. WAVELET ANALYSIS OF TURBULENCE IN BOUNDARY LAYER OF TYPHOON IN SOUTH CHINA SEA[J]. Journal of Tropical Meteorology, 2022, 38(4): 554-568. doi: 10.16032/j.issn.1004-4965.2022.050

南海台风边界层湍流小波分析

doi: 10.16032/j.issn.1004-4965.2022.050
基金项目: 

广东省重点领域研发计划项目 2019B111101002

国家自然科学基金项目 41875021

详细信息
    通讯作者:

    赵中阔,男,河南省人,研究员,主要从事海-气中小尺度耦合过程研究。E-mail:zhaozk@gd121.cn

  • 中图分类号: P433

WAVELET ANALYSIS OF TURBULENCE IN BOUNDARY LAYER OF TYPHOON IN SOUTH CHINA SEA

  • 摘要: 利用小波变换(WT)对香港天文台飞机观测台风“妮妲”(1604)资料进行分析,研究在不稳定、不均匀的台风边界层中湍流涡旋的垂直传输作用。在0.1~5 Hz惯性子区内横风和顺风分量功率谱密度能较好符合-5/3幂律。小波分析显示:横风的小波功率谱峰值集中在1 km之下,顺风分量的小波功率谱峰值集中在1~6 km之间;眼区动量通量的主要贡献尺度为2.3 km,眼区外主要贡献尺度在1~2 km,中低层为较小尺度(< 1.0 km);湍流功能(TKE)的生成尺度主要集中在4 km之下。这项研究定量描述了南海北部台风边界层各个区域湍流结构的差异特征,讨论了对台风边界层通量参数化的可能影响。

     

  • 图  1  07:30—07:59(a)和08:00—08:30(b)台风路径、探测路径和台风降水分布图

    细实线为台风路径;粗实线为飞机探测路径;填色为GPM 0.5 h降水,显示5 mm/h及以上降水。

    图  2  飞机探测三维风速、高度图和分区示意图

    a. U;b. V;c. W;d. 观测高度;e. 水平合成风;f. 三维合成风。
    Ⅰ:北侧弱眼墙区(07:30—07:50);Ⅱ:眼区(07:50—08:10);Ⅲ:南侧深对流区(08:10—08:30);Ⅳ:西侧弱眼墙区(08:30—08:55)。

    图  3  风随高度变化

    a. 探测资料数量统计;b. U随高度变化;c. V随高度变化;d. W随高度变化;e. 水平合成风随高度变化;f. 三维合成风随高度变化。蓝色实线为高度平均风速,垂直分辨率为0.5 m;红色实线为九点滑动平均值。

    图  4  2016年8月1日台风“妮妲”横风分量功率谱密度图

    黑色虚线是指数为-5/3的理想幂函数,棕色线为横风分量功率谱密度20点平滑;a. Ⅰ区;b. Ⅱ区;c. Ⅲ区;d. Ⅳ区。

    图  5  2016年8月1日台风“妮妲”顺风分量功率谱密度图

    黑色虚线是指数为-5/3的理想幂函数,棕色线为顺风分量功率谱密度20点平滑;a. Ⅰ区;b. Ⅱ区;c. Ⅲ区;d. Ⅳ区。

    图  6  观测结果得到的V风分量

    a. Ⅰ区;b. Ⅱ区;c. Ⅲ区;d. Ⅳ区;蓝色实线obs为观测得到;棕色虚线reconstructed为WT系数重建的时间序列。

    图  7  观测结果得到的顺风分量

    a. Ⅰ区;b. Ⅱ区;c. Ⅲ区;d. Ⅳ区;蓝色实线obs为观测得到;棕色虚线reconstructed为WT系数重建的时间序列。

    图  8  横风分量和顺风分量时间平均NWPS

    a. Ⅰ区横风;b. Ⅱ区横风;c. Ⅲ区横风;d. Ⅳ区横风;e. Ⅰ区顺风;f.Ⅱ区顺风;g. Ⅲ区顺风;h. Ⅳ区顺风;10 s时间间隔平均。

    图  9  横风分量和顺风分量峰值贡献

    a. 最大贡献尺度;b. 最大贡献尺度贡献率;c. 次大贡献尺度;d. 次大贡献尺度贡献率;e. 最大尺度;f. 最大尺度贡献率。

    图  10  动量通量τ小波分析

    (填色为小波功率谱,以横风的平均速度*时间周期=尺度,Ⅰ~Ⅳ区横风平均速度分别为:3.27、3.08、2.34、3.90 m/s,与FOSTER[47]计算的横向滚动速度2.2 m/s的量级相当,对Ⅳ区选取统一时间长度1 200 s)

    图  11  TKE小波分析

    (填色为小波功率谱;以横风的平均速度*时间周期=尺度,Ⅰ~Ⅳ区横风平均风速分别为:3.27、3.08、2.34、3.90 m/s,对Ⅳ区选取统一时间长度1 200 s)

    表  1  分区湍流平稳性检测表

    湍流平稳性
    U'W' 0.398 5 0.670 2 0.351 4 3.559 2
    U'W'等级 3 4 3 7
    V'W' 0.108 9 0.258 2 0.491 5 1.512 3
    V'W'等级 1 2 3 6
    下载: 导出CSV
  • [1] ANTHES R A. TROPICAL CYCLONES Their Evolution, Structure and Effects[M]. Boston: American Meteorological Society, 1982.
    [2] ZHANG J A, MARKS F D, MONTGOMERY M T, et al. An Estimation of Turbulent Characteristics in the Low-Level Region of Intense Hurricanes Allen (1980) and Hugo (1989)[J]. Mon Wea Rev, 2011, 139(5): 1 447-1 462. doi: 10.1175/2010MWR3435.1
    [3] BARNES G M, POWELL M D. Evolution of the inflow boundary layer of Hurricane Gilbert (1988)[J]. Mon Wea Rev, 1995, 123(8): 2 348- 2 368. doi: 10.1175/1520-0493(1995)123<2348:EOTIBL>2.0.CO;2
    [4] ZHU P, ZHANG J A, MASTERS F J. Wavelet Analyses of Turbulence in the Hurricane Surface Layer during Landfalls[J]. J Atmos Sci, 2010, 67(12): 3 793-3 805. doi: 10.1175/2010JAS3437.1
    [5] Shiau B. Velocity spectra and turbulence statistics at the northeastern coast of Taiwan under high-wind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2000, 88(2-3): 139-151. doi: 10.1016/S0167-6105(00)00045-3
    [6] Zhang H, Huang G, Xie B, et al. Research on Characteristics of Field Measured Near-earth Turbulence of Typhoon"Soulik"by Transmission Tower[M]. Qingdao, China: IOP Conference Series-Earth and Environmental Science, 2020: 531.
    [7] 赵坤, 王明筠, 朱科锋, 等. 登陆台风边界层风廓线特征的地基雷达观测[J]. 气象学报, 2015, 73(5): 837-852. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201505003.htm
    [8] WURMAN J, WINSLOW J. Intense sub-kilometer-scale boundary layer rolls observed in hurricane fran[J]. Science, 1998, 280(5363): 555- 557. doi: 10.1126/science.280.5363.555
    [9] LI S W, TSE K T, WEERASURIYA A U, et al. Estimation of turbulence intensities under strong wind conditions via turbulent kinetic energy dissipation rates[J]. Journal of Wind Engineering And Industrial Aerodynamics, 2014, 131: 1-11. doi: 10.1016/j.jweia.2014.04.008
    [10] TSUJINO S, HORINOUCHI T, TSUKADA T, et al. Inner‐core wind field in a concentric eyewall replacement of Typhoon Trami (2018): A Quantitative Analysis Based on the Himawari‐8 Satellite[J]. J Geophy Res, 2021, 126(7): e2020JD034434.
    [11] ZHAO Z, CHAN P W, WU N, et al. Aircraft observations of turbulence characteristics in the tropical cyclone boundary layer[J]. BoundaryLayer Meteorology, 2020, 174(3): 493-511.
    [12] 蔡晓冬, 明杰, 王元. 基于下投式探空仪资料的超强台风蔷薇(2008)动力和热力结构特征分析[J]. 地球物理学报, 2019, 62(3): 825-835. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201903002.htm
    [13] 雷小途, 雷明, 赵兵科, 等. 火箭弹下投探测台风气象参数新技术及初步试验[J]. 科学通报, 2017, 62(32): 3 789-3 796. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201732016.htm
    [14] 雷小途. 无人飞机在台风探测中的应用进展[J]. 地球科学进展, 2015, 30(2): 276-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201502010.htm
    [15] 丁成慧, 李江南, 赵杨洁, 等. 边界层参数化方案对南海秋季台风"莎莉嘉"(2016)模拟的影响[J]. 热带气象学报, 2018, 34(5): 657-673. https://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201805008.htm
    [16] 辅天华. 东亚近海热带气旋模拟对模式物理过程参数化的敏感性研究[D]. 南京: 南京信息工程大学, 2020: 66.
    [17] WANG C, YING M. The Uncertainty of Tropical Cyclone Intensity and Structure Based on Different Parameterization Schemes of Planetary Boundary Layer[J]. J Trop Meteor, 2020, 26(4): 377-389.
    [18] CHENG J, LI Q. A numerical study of convective-scale downdrafts in the outer core of tropical cyclones in vertically varying environmental flows[J]. Tropical Cyclone Research and Review, 2020, 9(3): 143-161. doi: 10.1016/j.tcrr.2020.06.002
    [19] RAJESWARI J R, SRINIVAS C V, MOHAN P R, et al. Impact of Boundary Layer Physics on Tropical Cyclone Simulations in the Bay of Bengal Using the WRF Model[J]. Pure and Applied Geophysics, 2020, 177(11): 5 523-5 550. doi: 10.1007/s00024-020-02572-3
    [20] SHI D, GE X, PENG M. Latitudinal dependence of the dry air effect on tropical cyclone development[J]. Dynamics of Atmospheres and Oceans, 2019, 87: 101102. doi: 10.1016/j.dynatmoce.2019.101102
    [21] CHEN Y, ZHANG N. The Wind Turbulence of the Near-surface Layer of Jiangsu Coastal Area and Its Response to Typhoon[J]. Journal of Applied Meteorolgical Science, 2019, 30(2): 177-190.
    [22] FOKEN T, WICHURA B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and forest meteorology, 1996, 78(1): 83-105.
    [23] HUANG P, XIE W, GU M. A comparative study of the wind characteristics of three typhoons based on stationary and nonstationary models [J]. Natural Hazards, 2020, 101(3): 785-815. doi: 10.1007/s11069-020-03894-0
    [24] LI L, KAREEM A, HUNT J, et al. Turbulence Spectra for Boundary-Layer Winds in Tropical Cyclones: A Conceptual Framework and Field Measurements at Coastlines[J]. Boundary-Layer Meteorology, 2015, 154(2): 243-263. doi: 10.1007/s10546-014-9974-7
    [25] MENG Y, MATSUI M, HIBI K. A numerical study of the wind field in a typhoon boundary layer[J]. Journal of wind engineering and industrial aerodynamics, 1997, 67: 437-448.
    [26] BESWICK K M, GALLAGHER M W, WEBB A R, et al. Application of the Aventech AIMMS20AQ airborne probe for turbulence measurements during the Convective Storm Initiation Project[J]. Atmospheric Chemistry and Physics, 2008, 8(17): 5 449-5 463. doi: 10.5194/acp-8-5449-2008
    [27] FOSTER S, CHAN P W. Improving the wind and temperature measurements of an airborne meteorological measuring system[J]. Journal of Zhejiang University. A. Science, 2012, 13(10): 723-746. doi: 10.1631/jzus.A1100245
    [28] ZHANG J A. Spectral characteristics of turbulence in the hurricane boundary layer over the ocean between the outer rain bands[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(649): 918-926. doi: 10.1002/qj.610
    [29] ZHANG J A, Drennan W M, Black P G, et al. Turbulence Structure of the Hurricane Boundary Layer between the Outer Rainbands[J]. J Atmos Sci, 2009, 66(8): 2 455-2 467. doi: 10.1175/2009JAS2954.1
    [30] ZHANG J A, Black P G, French J R, et al. First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results [J]. Geophysical Research Letters, 2008, 35(14): L14813. doi: 10.1029/2008GL034374
    [31] ZHANG J A, Katsaros K B, Black P G, et al. Effects of Roll Vortices on Turbulent Fluxes in the Hurricane Boundary Layer[J]. BoundaryLayer Meteorology. 2008, 128(2): 173-189.
    [32] FRENCH J R, DRENNAN W M, ZHANG J A, et al. Turbulent Fluxes in the Hurricane Boundary Layer. Part Ⅰ: Momentum Flux[J]. Journal of the Atmospheric Sciences. 2007, 64(4): 1 089-1 102. doi: 10.1175/JAS3887.1
    [33] TORRENCE C, COMPO G P. A Practical Guide to Wavelet Analysis[J]. Bulletin of the American Meteorological Society. 1998, 79(1): 61-78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    [34] VICKERS D, MAHRT L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(31): 512-526.
    [35] 张宏昇. 大气湍流基础[M]. 北京: 北京大学出版社, 2014.
    [36] WANG B, HE Z, SONG L, et al. Improved Calculation of Turbulence Parameters Based on Six Tropical Cyclone Cases: Implication to Wind Turbine Design in Typhoon-Prone Areas[J]. J Meteor Res, 2019, 33(5): 895-904.
    [37] 肖辉, 万齐林, 刘显通, 等. 台风"妮妲"(1604)登陆期间近地层风特性分析[J]. 海洋气象学报, 2017, 37(2): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201702005.htm
    [38] ZHAO L, CUI W, GE Y. Measurement, modeling and simulation of wind turbulence in typhoon outer region[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 195: 104021.
    [39] 曾庆存, 程雪玲, 吴琳. 浪花和飞沫水滴在海面大风边界层中的垂直传输[J]. 大气科学, 2018, 42(3): 448-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201803001.htm
    [40] MOMEN M, PARLANGE M B, GIOMETTO M G. Scrambling and Reorientation of Classical Atmospheric Boundary Layer Turbulence in Hurricane Winds[J]. Geophy Res Lett, 2021, 48(7): e2020GL091695.
    [41] VALENTE P C, VASSILICOS J C. The energy cascade in grid-generated non-equilibrium decaying turbulence[J]. Physics of Fluids. 2015, 27(4): 045103.
    [42] MOLOD A, SUAREZ M, PARTYKA G. The impact of limiting ocean roughness on GEOS-5 AGCM tropical cyclone forecasts[J]. Geophy Res Lett, 2013, 40(2): 411-416.
    [43] STRUNIN M A, HIYAMA T. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia[J]. Hydrological Processes. 2004, 18(16): 3 081-3 098.
    [44] RINOSHIKA A, RINOSHIKA H. Application of multi-dimensional wavelet transform to fluid mechanics[J]. Theoretical and Applied Mechanics Letters, 2020, 10(2): 98-115.
    [45] MORRISON I, BUSINGER S, MARKS F, et al. An observational case for the prevalence of roll vortices in the hurricane boundary layer[J]. J Atmos Sci, 2005, 62(8): 2 662-2 673.
    [46] ZHANG J A, MARKS F D, MONTGOMERY M T, et al. An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989)[J]. Mon Wea Rev, 2011, 139(5): 1 447-1 462.
    [47] FOSTER R C. Why rolls are prevalent in the hurricane boundary layer[J]. Journal of the Atmospheric Sciences. 2005, 62(8): 2 647-2 661.
    [48] SUZUKI N, HARA T, SULLIVAN P P. Impact of Dominant Breaking Waves on Air-Sea Momentum Exchange and Boundary Layer Turbulence at High Winds[J]. Journal of Physical Oceanography, 2014, 44(4): 1 195-1 212.
    [49] SHARMA R N, RICHARDS P J. A re-examination of the characteristics of tropical cyclone winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1): 21-33.
    [50] NAKANISHI M, NⅡNO H. Large-Eddy Simulation of Roll Vortices in a Hurricane Boundary Layer[J]. J Atmos Sci, 2012, 69(12): 3 558- 3 575.
    [51] BYRNE D, ZHANG J A. Height-dependent transition from 3-D to 2-D turbulence in the hurricane boundary layer[J]. Geophy Res Lett, 2013, 40(7): 1 439-1 442.
    [52] LORSOLO S, ZHANG J A, Marks F, et al. Estimation and mapping of hurricane turbulent energy using airborne Doppler measurements[J]. Mon Wea Rev, 2010, 138(9): 3 656-3 670.
    [53] 王雨星, 钟中, 孙源, 等. 两种边界层参数化方案模拟热带气旋Megi(2010)路径差异的机理分析[J]. 地球物理学报, 2017, 60(7): 2 545- 2 555. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201707004.htm
    [54] GERBI G P, TROWBRIDGE J H, TERRAY E A, et al. Observations of Turbulence in the Ocean Surface Boundary Layer: Energetics and Transport[J]. Journal of Physical Oceanography, 2009, 39(5): 1 077-1 096.
    [55] BOND N A, WALTER B A. Research Aircraft Observations of the Mean and Turbulent Structure of a Low-Level Jet Accompanying a Strong Storm[J]. J Appl Meteor, 2002, 41(12): 1 210-1 224.
    [56] TANG J, ZHANG J A, KIEU C, et al. Sensitivity of Hurricane Intensity and Structure to Two Types of Planetary Boundary Layer Parameterization Schemes in Idealized HWRF Simulations[J]. Tropical Cyclone Research and Review, 2018, 7(4): 201-211.
    [57] LORSOLO S, ZHANG J A, MARKS F, et al. Estimation and Mapping of Hurricane Turbulent Energy Using Airborne Doppler Measurements[J]. Mon Wea Rev, 2010, 138(9): 3 656-3 670.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  12
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-10
  • 修回日期:  2021-12-09
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2022-08-20

目录

    /

    返回文章
    返回