ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤黄东海40年水位模拟与分析

朱海山 尹汉军 程高磊 李少钿 朱宇航 彭世球

朱海山, 尹汉军, 程高磊, 李少钿, 朱宇航, 彭世球. 渤黄东海40年水位模拟与分析[J]. 热带气象学报, 2022, 38(4): 591-599. doi: 10.16032/j.issn.1004-4965.2022.053
引用本文: 朱海山, 尹汉军, 程高磊, 李少钿, 朱宇航, 彭世球. 渤黄东海40年水位模拟与分析[J]. 热带气象学报, 2022, 38(4): 591-599. doi: 10.16032/j.issn.1004-4965.2022.053
ZHU Haishan, YIN Hanjun, CHENG Gaolei, LI Shaotian, ZHU Yuhang, PENG Shiqiu. MODELING AND ANALYSIS OF WATER LEVEL FOR 40 YEARS IN THE BOHAI SEA, YELLOW SEA AND EAST CHINA SEA[J]. Journal of Tropical Meteorology, 2022, 38(4): 591-599. doi: 10.16032/j.issn.1004-4965.2022.053
Citation: ZHU Haishan, YIN Hanjun, CHENG Gaolei, LI Shaotian, ZHU Yuhang, PENG Shiqiu. MODELING AND ANALYSIS OF WATER LEVEL FOR 40 YEARS IN THE BOHAI SEA, YELLOW SEA AND EAST CHINA SEA[J]. Journal of Tropical Meteorology, 2022, 38(4): 591-599. doi: 10.16032/j.issn.1004-4965.2022.053

渤黄东海40年水位模拟与分析

doi: 10.16032/j.issn.1004-4965.2022.053
基金项目: 

南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项 GML2019ZD0303

广东省重点工程 2019BT2H594

深水浮式平台一体化在线监测与分析软件集成系统研制 LSZX-2020-HN-05-04

海上油气田精细化环境预报与参数区划关键技术 YXKY-ZX 07 2020

南海北部内波区划及工程参数研究 YXKY-ZX 102021

中国科学院空间科学战略性先导科技专项 XDA15020901

广西重点研发计划 桂科AB18294047

广东省重点领域研发计划 2019B111101002

详细信息
    通讯作者:

    程高磊,男,河南省人,助理研究员,博士,主要从事河口与陆架环流、泥沙输运等方面的研究。E-mail:cgaolei26@scsio.ac.cn

  • 中图分类号: P731.34

MODELING AND ANALYSIS OF WATER LEVEL FOR 40 YEARS IN THE BOHAI SEA, YELLOW SEA AND EAST CHINA SEA

  • 摘要: 基于1980—2019年数值模拟的水位和ERA5的风速数据,使用EOF分析方法,研究了渤黄东海40年的水位变化特征和动力机制,分析了气候变化和极端天气对水位变化产生的影响。EOF分析主要模态结果显示,东海东北部海域的水位变化受黑潮路径改变的影响比较明显,并存在一定的时间延迟;台湾岛东北部的水位变化受到黑潮入侵影响,与ENSO变化呈现一定相关性。研究区风速的EOF分析结果显示,年际变化受ENSO的影响显著,并影响了渤黄东海部分区域的水位变化。

     

  • 图  1  模式网格区域和观测站位置

    图  2  模拟的1980年增水与观测值对比结果

    图  3  1980—2019年渤黄东海月平均水位距平场前4个EOF模态的空间分布

    a. EOF1;b. EOF2;c. EOF3;d. EOF4。

    图  4  EOF第一模态时间系数(a)与黑潮路径指数(b)[30]

    a中黑色粗线为12个月低通滤波、b中黑色粗线为6个月低通滤波;a1~a6、b1~b6为较大的正值年份。

    图  5  EOF第三模态时间系数(a)与ENSO指数(b)

    黑色粗线为12个月低通滤波;a1~a6、b1~b6为较大的正值年份。

    图  6  1980—2019年渤黄东海月平均风速距平场前4个EOF模态的空间分布

    a. EOF1;b. EOF2;c. EOF3;d. EOF4。

    图  7  40年风速EOF分析第一模态的时间系数(a)与ENSO指数(b)

    黑色粗线为12个月低通滤波后数据。

    图  8  风速的第一模态时间系数12个月低通滤波后与ENSO指数对比结果

  • [1] WOODWORTH P L, MELET A, MARCOS M, et al. Forcing factors affecting sea level changes at the coast[J]. Surveys in Geophysics, 2019, 40(6): 1 351-1 397. doi: 10.1007/s10712-019-09531-1
    [2] 李阔, 李国胜. 珠江三角洲地区风暴潮重现期及增水与环境要素的关系[J]. 地理科学进展, 2010, 29(4): 433-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201004008.htm
    [3] CHURCH J A, WHITE N J. Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics, 2011, 32(4): 585-602.
    [4] NEUKOM R, BARBOZA L A, ERB M P, et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common ERA[J]. Nature Geoscience, 2019, 12(8): 643-649. doi: 10.1038/s41561-019-0400-0
    [5] 李想, 张雪芹, 徐晓明. 近40年来贝加尔湖区气候变化及其对湖泊水位的影响[J]. 湖泊科学, 2022, 34(1): 219-231. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202201018.htm
    [6] WANG L L, LI Q, MAO X Z, et al. Interannual sea level variability in the Pearl River Estuary and its response to El Niño-Southern Oscillation[J]. Global and Planetary Change, 2018, 162(2): 163-174.
    [7] CHEN N, HAN G, YANG J. Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries[J]. Continental Shelf Research, 2018, 152(1): 27-34.
    [8] ALMAR R, RANASINGHE R, BERGSMA E W J, et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping[J]. Nature Communications, 2021, 12(1): 3775. doi: 10.1038/s41467-021-24008-9
    [9] CHEN X, FENG Y, HUANG N E. Global sea level trend during 1993-2012[J]. Global and Planetary Change, 2014, 112(1): 26-32.
    [10] WAGNER P, SCHEINERT M, BÖNING C W. Contribution of buoyancy fluxes to tropical Pacific sea level variability[J]. Ocean Sci, 2021, 17(4): 1 103-1 113. doi: 10.5194/os-17-1103-2021
    [11] WEBB D J. On the low western Pacific sea levels observed prior to strong East Pacific El Niños[J]. Ocean Sci, 2021, 17(6): 1 585-1 604. doi: 10.5194/os-17-1585-2021
    [12] GENES L S, MONTOYA R D, OSORIO A F. Costal sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea[J]. Continental Shelf Research, 2021, 228(14): 104489.
    [13] TORRES R R, TSIMPLIS M N. Sea-level trends and interannual variability in the Caribbean Sea[J]. J Geophy Res: Oceans, 2013, 118(6): 2 934-2 947. doi: 10.1002/jgrc.20229
    [14] SHCHEPETKIN A F, MCWILLIAMS J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. J Geophy Res: Oceans, 2003, 108(3), doi: 10.1029/2001jc001047.
    [15] SHCHEPETKIN A F, MCWILLIAMS J C. The regional oceanic modeling system (ROMS): asplit-explicit, free-surface, topographyfollowing-coordinate oceanic model[J]. Ocean Model, 2005, 9(4): 347-404. doi: 10.1016/j.ocemod.2004.08.002
    [16] WARNER J C, GEYER W R, LERCZAK J A. Numerical modeling of an estuary: A comprehensive skill assessment[J]. J Geophys ResOceans, 2005, 110(5), doi: 10.1029/2004jc002691.
    [17] WARNER J C, SHERWOOD C R, ARANGO H G, et al. Performance of four turbulence closure models in implemented using a generic length scale method[J]. Ocean Modelling, 2005, 8(1): 81-113.
    [18] WARNER J C, ARMSTRONG B, HE R, et al. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System[J]. Ocean Modelling, 2010, 35(3): 230-244. doi: 10.1016/j.ocemod.2010.07.010
    [19] WARNER J C, SCHWAB W C, LIST J H, et al. Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy[J]. Continental Shelf Research, 2017, 138(C4): 1-18.
    [20] BIAN C, JIANG W, GREATBATCH R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. J Geophy Res: Oceans, 2013, 118(11): 5 908-5 923. doi: 10.1002/2013JC009116
    [21] WU R, WU H, WANG Y. Modulation of shelf circulations under multiple river discharges in the East China Sea[J]. J Geophy Res: Oceans, 2021, 126(4), e2020JC016990.
    [22] ZHANG W, MORIARTY J M, WU H, et al. Response of bottom hypoxia off the Changjiang River Estuary to multiple factors: A numerical study[J]. Ocean Modelling, 2021, 159: 101751. doi: 10.1016/j.ocemod.2021.101751
    [23] 陈心一, 郝增周, 潘德炉, 等. 中国近海海面风场的时空特征分析[J]. 海洋学研究, 2014, 32(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DHHY201401001.htm
    [24] 石强. 黄海月平均风、气压、气温场季节与年际变化时空模态[J]. 应用海洋学学报, 2017, 36(4): 487-499. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX201704005.htm
    [25] 石强. 渤、黄海冬、夏季节风生流场年际变化时空模态与环流变异[J]. 应用海洋学学报, 2019, 38(1): 93-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX201901011.htm
    [26] PAWLOWICZ R, BEARDSLEY B, LENTZ S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929-937.
    [27] 莫冬雪. 中国近海寒潮影响下的灾害性海洋动力环境研究[D]. 北京: 中国科学院大学(中国科学院海洋研究所), 2018.
    [28] YANG D Z, HUANG R X, YIN B S, et al. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current[J]. Geophy Res Lett, 2018, 45(1): 287-296.
    [29] ZHANG H, SHENG J. Examination of extreme sea levels due to storm surges and tides over the northwest Pacific Ocean[J]. Continental Shelf Research, 2015, 93(1): 81-97.
    [30] QIU B, CHEN S, SCHNEIDER N, et al. On the reset of the wind-forced decadal Kuroshio extension variability in late 2017[J]. J Climate, 2020, 33(24): 10 813-10 828.
    [31] LIU X, DONG C, CHEN D, et al. The pattern and variability of winter Kuroshio intrusion northeast of Taiwan[J]. J Geophy Res: Oceans, 2014, 119(8): 5 380-5 94.
    [32] YAN X, ZHU X H, PANG C, et al. Effects of mesoscale eddies on the volume transport and branch pattern of the Kuroshio east of Taiwan [J]. J Geophy Res: Oceans, 2016, 121(10): 7 683-7 700.
    [33] YIN Y, LIN X, HE R, et al. Impact of mesoscale eddies on Kuroshio intrusion variability northeast of Taiwan[J]. J Geophy Res: Oceans, 2017, 122(4): 3 021-3 040.
    [34] 左军成, 于宜法, 陈宗镛. 中国沿岸海平面变化原因的探讨[J]. 地球科学进展, 1994, 9(5): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ405.007.htm
    [35] ZUO J C, HE Q Q, CHEN C L, et al. Sea level variability in East China Sea and its response to ENSO[J]. Water Science and Engineering, 2012, 5(2): 164-174.
    [36] 宋云平, 朱建荣. 长江口余水位时空变化的数值模拟和分析[J]. 华东师范大学学报(自然科学版), 2021(4): 121-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HDSZ202104014.htm
    [37] DING Y, BAO X, SHI M. Characteristics of coastal trapped waves along the northern coast of the South China Sea during year 1990[J]. Ocean Dynamics, 2012, 62(9): 1 259-1 285.
    [38] YIN L, QIAO F, ZHENG Q. Coastal-Trapped Waves in the East China Sea Observed by a Mooring Array in Winter 2006[J]. J Phys Oceano, 2014, 44(2): 576-590.
  • 加载中
图(8)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 修回日期:  2022-06-18
  • 网络出版日期:  2022-10-25
  • 刊出日期:  2022-08-20

目录

    /

    返回文章
    返回