MODELING AND ANALYSIS OF WATER LEVEL FOR 40 YEARS IN THE BOHAI SEA, YELLOW SEA AND EAST CHINA SEA
-
摘要: 基于1980—2019年数值模拟的水位和ERA5的风速数据,使用EOF分析方法,研究了渤黄东海40年的水位变化特征和动力机制,分析了气候变化和极端天气对水位变化产生的影响。EOF分析主要模态结果显示,东海东北部海域的水位变化受黑潮路径改变的影响比较明显,并存在一定的时间延迟;台湾岛东北部的水位变化受到黑潮入侵影响,与ENSO变化呈现一定相关性。研究区风速的EOF分析结果显示,年际变化受ENSO的影响显著,并影响了渤黄东海部分区域的水位变化。Abstract: Based on the ERA5 wind speed data and numerical simulation of water level from 1980 to 2019, this paper uses the Empirical Orthogonal Function (EOF) analysis method to study the characteristics and dynamic mechanism of water level change over the past 40 years in the Bohai Sea, Yellow Sea, and the East China Sea, and analyzes the impact of climate change and extreme weather on water level change. The results show that the water level variation at the northeast part of the East China Sea was significantly affected by the Kuroshio path change and there was a time lag. The water level variation of sea on the northeast of Taiwan Island was affected by the Kuroshio invasion and was correlated with the El Ni?oSouthern Oscillation (ENSO). Significantly affected by ENSO, the interannual variation of wind speed influenced the water level variation at some areas in the Bohai Sea, Yellow Sea, and the East China Sea.
-
Key words:
- water level change /
- EOF /
- Kuroshio /
- ENSO
-
图 4 EOF第一模态时间系数(a)与黑潮路径指数(b)[30]
a中黑色粗线为12个月低通滤波、b中黑色粗线为6个月低通滤波;a1~a6、b1~b6为较大的正值年份。
-
[1] WOODWORTH P L, MELET A, MARCOS M, et al. Forcing factors affecting sea level changes at the coast[J]. Surveys in Geophysics, 2019, 40(6): 1 351-1 397. [2] 李阔, 李国胜. 珠江三角洲地区风暴潮重现期及增水与环境要素的关系[J]. 地理科学进展, 2010, 29(4): 433-8. [3] CHURCH J A, WHITE N J. Sea-level rise from the late 19th to the early 21st century[J]. Surveys in Geophysics, 2011, 32(4): 585-602. [4] NEUKOM R, BARBOZA L A, ERB M P, et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common ERA[J]. Nature Geoscience, 2019, 12(8): 643-649. [5] 李想, 张雪芹, 徐晓明. 近40年来贝加尔湖区气候变化及其对湖泊水位的影响[J]. 湖泊科学, 2022, 34(1): 219-231. [6] WANG L L, LI Q, MAO X Z, et al. Interannual sea level variability in the Pearl River Estuary and its response to El Niño-Southern Oscillation[J]. Global and Planetary Change, 2018, 162(2): 163-174. [7] CHEN N, HAN G, YANG J. Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries[J]. Continental Shelf Research, 2018, 152(1): 27-34. [8] ALMAR R, RANASINGHE R, BERGSMA E W J, et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping[J]. Nature Communications, 2021, 12(1): 3775. [9] CHEN X, FENG Y, HUANG N E. Global sea level trend during 1993-2012[J]. Global and Planetary Change, 2014, 112(1): 26-32. [10] WAGNER P, SCHEINERT M, BÖNING C W. Contribution of buoyancy fluxes to tropical Pacific sea level variability[J]. Ocean Sci, 2021, 17(4): 1 103-1 113. [11] WEBB D J. On the low western Pacific sea levels observed prior to strong East Pacific El Niños[J]. Ocean Sci, 2021, 17(6): 1 585-1 604. [12] GENES L S, MONTOYA R D, OSORIO A F. Costal sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea[J]. Continental Shelf Research, 2021, 228(14): 104489. [13] TORRES R R, TSIMPLIS M N. Sea-level trends and interannual variability in the Caribbean Sea[J]. J Geophy Res: Oceans, 2013, 118(6): 2 934-2 947. [14] SHCHEPETKIN A F, MCWILLIAMS J C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate[J]. J Geophy Res: Oceans, 2003, 108(3), doi: 10.1029/2001jc001047. [15] SHCHEPETKIN A F, MCWILLIAMS J C. The regional oceanic modeling system (ROMS): asplit-explicit, free-surface, topographyfollowing-coordinate oceanic model[J]. Ocean Model, 2005, 9(4): 347-404. [16] WARNER J C, GEYER W R, LERCZAK J A. Numerical modeling of an estuary: A comprehensive skill assessment[J]. J Geophys ResOceans, 2005, 110(5), doi: 10.1029/2004jc002691. [17] WARNER J C, SHERWOOD C R, ARANGO H G, et al. Performance of four turbulence closure models in implemented using a generic length scale method[J]. Ocean Modelling, 2005, 8(1): 81-113. [18] WARNER J C, ARMSTRONG B, HE R, et al. Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System[J]. Ocean Modelling, 2010, 35(3): 230-244. [19] WARNER J C, SCHWAB W C, LIST J H, et al. Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy[J]. Continental Shelf Research, 2017, 138(C4): 1-18. [20] BIAN C, JIANG W, GREATBATCH R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. J Geophy Res: Oceans, 2013, 118(11): 5 908-5 923. [21] WU R, WU H, WANG Y. Modulation of shelf circulations under multiple river discharges in the East China Sea[J]. J Geophy Res: Oceans, 2021, 126(4), e2020JC016990. [22] ZHANG W, MORIARTY J M, WU H, et al. Response of bottom hypoxia off the Changjiang River Estuary to multiple factors: A numerical study[J]. Ocean Modelling, 2021, 159: 101751. [23] 陈心一, 郝增周, 潘德炉, 等. 中国近海海面风场的时空特征分析[J]. 海洋学研究, 2014, 32(1): 1-10. [24] 石强. 黄海月平均风、气压、气温场季节与年际变化时空模态[J]. 应用海洋学学报, 2017, 36(4): 487-499. [25] 石强. 渤、黄海冬、夏季节风生流场年际变化时空模态与环流变异[J]. 应用海洋学学报, 2019, 38(1): 93-108. [26] PAWLOWICZ R, BEARDSLEY B, LENTZ S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929-937. [27] 莫冬雪. 中国近海寒潮影响下的灾害性海洋动力环境研究[D]. 北京: 中国科学院大学(中国科学院海洋研究所), 2018. [28] YANG D Z, HUANG R X, YIN B S, et al. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current[J]. Geophy Res Lett, 2018, 45(1): 287-296. [29] ZHANG H, SHENG J. Examination of extreme sea levels due to storm surges and tides over the northwest Pacific Ocean[J]. Continental Shelf Research, 2015, 93(1): 81-97. [30] QIU B, CHEN S, SCHNEIDER N, et al. On the reset of the wind-forced decadal Kuroshio extension variability in late 2017[J]. J Climate, 2020, 33(24): 10 813-10 828. [31] LIU X, DONG C, CHEN D, et al. The pattern and variability of winter Kuroshio intrusion northeast of Taiwan[J]. J Geophy Res: Oceans, 2014, 119(8): 5 380-5 94. [32] YAN X, ZHU X H, PANG C, et al. Effects of mesoscale eddies on the volume transport and branch pattern of the Kuroshio east of Taiwan [J]. J Geophy Res: Oceans, 2016, 121(10): 7 683-7 700. [33] YIN Y, LIN X, HE R, et al. Impact of mesoscale eddies on Kuroshio intrusion variability northeast of Taiwan[J]. J Geophy Res: Oceans, 2017, 122(4): 3 021-3 040. [34] 左军成, 于宜法, 陈宗镛. 中国沿岸海平面变化原因的探讨[J]. 地球科学进展, 1994, 9(5): 48-53. [35] ZUO J C, HE Q Q, CHEN C L, et al. Sea level variability in East China Sea and its response to ENSO[J]. Water Science and Engineering, 2012, 5(2): 164-174. [36] 宋云平, 朱建荣. 长江口余水位时空变化的数值模拟和分析[J]. 华东师范大学学报(自然科学版), 2021(4): 121-133. [37] DING Y, BAO X, SHI M. Characteristics of coastal trapped waves along the northern coast of the South China Sea during year 1990[J]. Ocean Dynamics, 2012, 62(9): 1 259-1 285. [38] YIN L, QIAO F, ZHENG Q. Coastal-Trapped Waves in the East China Sea Observed by a Mooring Array in Winter 2006[J]. J Phys Oceano, 2014, 44(2): 576-590. -