SIMULATION AND ANALYSIS OF A MESOSCALE CONVECTIVE SYSTEM WITH CONVECTIVE MODE TRANSITION
-
摘要: 利用NCEP FNL分析资料及南京多普勒雷达观测,借助WRF模式,对2017年8月19日发生在长江中下游地区的一次中尺度对流系统(MCS)进行模拟和诊断分析。此次MCS组织模态PS(Parallel Stratiform)型和TS(Trailing Stratiform)型共存,开始为带状结构,最后演变为强弓状飑线。气旋切变和低空急流是此次过程的重要影响系统,而午后强烈发展的地面锋触发了此次强对流。在垂直风切变和冷池共同作用下,西侧初始对流发展为PS型模态,东侧发展为TS型模态。由于PS型模态的中低层垂直风切变发生转向,导致其消散。TS型模态附近冷池和垂直风切变相配合,且在后向入流(Rear Inflow Jets,RIJ)作用下发展成为强弓状飑线;RIJ受中低层涡旋对影响而发展增强,其中气旋式涡旋主要由涡度方程中拉伸项决定,而反气旋式涡旋则主要由倾侧项决定。Abstract: Using NCEP FNL analysis data, Nanjing Doppler radar echo data, and the WRF model, the present study simulated and analyzed a mesoscale convective system (MCS) that occurred on August 19, 2017 in the middle and lower reaches of the Yangtze River. Among the MCS' organizational modes, the convective lines with parallel stratiform (PS) and with trailing stratiform (TS) modes coexisted. It began with a ribbon structure, and finally evolved into a strong bow-shaped squall line. Cyclone shear and low-level jet were two important systems influencing the occurrence and development of the strong convective weather, and the strong developing ground front in the afternoon was a key triggering mechanism. Under the combined influence of vertical wind shear and cold pool, the initial convection on the west side developed into PS mode, and that on the east side developed into TS mode. As the vertical wind shear in the middle and low layers of the PS mode turned, the PS mode dissipated. The cold pool near the TS mode cooperated with the vertical wind shear, and the TS mode continued to develop into a strong bow-shaped squall line under the influence of strong rear inflow jets. The rear inflow jet strengthened under the influence of the mid-level and low-level vortices. The cyclonic vortex was mainly determined by the stretching term in the vorticity equation, while the anticyclonic vortex was mainly determined by the titling term.
-
Key words:
- mesoscale convective system /
- PS mode /
- TS mode /
- bow-shaped squall line /
- rear inflow jets
-
图 3 模拟的不同时次雷达组合反射率
单位:dBZ,其中线段a、b为图 5垂直剖面位置。
-
[1] MADDOX R A. Mesoscale convective complexes[J]. Bull Amer Meteor Soc, 1980, 61(11): 1 374-1 387. [2] PARKER M D, JOHNSON R H. Structures and dynamics of quasi-2D mesoscale convective systems[J]. J Atmos Sci, 2004, 61(5): 545-567. [3] PARKER M D. Simulated convective lines with parallel stratiform precipitation. part Ⅰ: an archetype for convection in along-line shear[J]. J Atmos Sci, 2007, 64(2): 267-288. [4] PARKER M D. Simulated convective lines with parallel stratiform precipitation. part Ⅱ: governing dynamics and associated sensitivities[J]. J Atmos Sci, 2007, 64(2): 289-313. [5] MENG Z Y, ZHANG F Q, MARKOWSKI P, et al. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China[J]. J Atmos Sci, 2012, 69(4): 1 182-1 207. [6] 曹倩, 张述文, 曹帮军, 等. 超强不稳定和弱切变环境下一次飑线过程的雷达资料同化与分析[J]. 热带气象学报, 2016, 32(5): 645-655. [7] 任星露, 张述文, 汪兰, 等. 不同云微物理方案对弱天气尺度强迫下一次强对流的模拟[J]. 高原气象, 2020, 39(4): 750-761. [8] HOUZE, ROBERT A. Structure and dynamics of a tropical squall-line system[J]. Mon Wea Rev, 1977, 105(12): 1 540-1 567. [9] MCANELLY R L, COTTON W R. The precipitation life cycle of mesoscale convective complexes over the central United States[J]. Mon Wea Rev, 1988, 117(4): 105-112. [10] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10): 3 413-3 436. [11] ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 2004, 45(3): 463-485. [12] WEISMAN M L. Structure and evolution of numerically simulated squall lines[J]. J Atmos Sci, 1988, 45(14): 1 990-2 013. [13] WEISMAN M L, ROTUUNO R. "A theory for strong, long-lived squall lines"revisited[J]. J Atmos Sci, 2004, 61(4): 361-382. [14] 陈明轩, 王迎春. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J]. 气象学报, 2012, 70(3): 371-386. [15] 朱莉, 王治国, 李华宏, 等. 西行台风背景下云南一次短时强降水过程的成因分析[J]. 热带气象学报, 2020, 36(6): 744-758. [16] 胡宁, 汪会. 华南一次强对流天气过程中环境条件对MCS形态特征的影响[J]. 热带气象学报, 2019, 35(5): 681-693. [17] ATKINS N T, LAURENT M S. Bow echo mesovortices. part Ⅰ: processes that influence their damaging potential[J]. Mon Wea Rev, 2009, 137(5): 1 497-1 513. [18] ATKINS N T, LAURENT M S. Bow echo mesovortices. part Ⅱ: their genesis[J]. Mon Wea Rev, 2009, 137(5): 1 514-1 532. [19] 席乐, 闵锦忠, 王仕奇. 一次华南强飑线过程的数值模拟及后方入流作用诊断[J]. 气象科学, 2018, 38(6): 36-45. [20] GRIM J A, RAUBER R M, MCFARQUHAR G M, et al. Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX[J]. Mon Wea Rev, 2015, 137(4): 1 206-1 229.