CHARACTERISTICS OF CLOUD-TO-GROUND LIGHTNING ACTIVITIES UNDER INFLUENCE OF COMPLEX TERRAIN IN CHONGQING
-
摘要: 利用DEM高程数据和2008—2020年重庆地区ADTD闪电定位资料,研究了重庆地区复杂地形影响下的地闪活动特征。结果表明:(1)重庆地区地闪活动空间分布具有明显的区域性差异,且与地形及海拔高度密切相关,整体表现为自西向东,由盆地、丘陵到高山山地区域地闪活动逐渐减弱,正地闪占比逐渐增大的特征;(2)重庆地区地闪活动年际变化分布不均,月变化呈单峰型,7月为峰值,主要集中在4—9月,占全年的96.3%,日变化呈双峰型,夜间峰值集中在00:00—04:00,白天峰值集中在14:00—18:00,08:00—12:00为地闪活动最弱时段;(3)地闪活动月、季节尺度变化主要受大尺度天气系统支配,地形及海拔高度对地闪活动影响主要体现在日变化的显著差异上,在海拔1 000 m以下的盆地、丘陵和低山区域,夜间地闪频数明显多于白天,具有夜间主导型特征,海拔1 000 m以上的高山山地区域,白天地闪频数多于夜间,具有白天主导型特征,海拔高度越高,闪电越易出现在白天;(4)正地闪强度明显大于负地闪,地形及海拔高度变化对地闪强度影响不明显。Abstract: Based on DEM terrain elevation data and ADTD lightning location data of Chongqing from 2008 to 2020, the temporal and spatial distribution characteristics of cloud-to-ground (CG) lightning activities under the influence of complex terrain in Chongqing were studied. The results showed that: (1) The spatial distribution of CG lightning activities in Chongqing exhibited significant differences, and it was closely related to topography and altitude. From west to east, the CG lightning activities in Chongqing gradually weakened from basins to hills and to the mountainous areas with high altitudes, and the proportion of positive CG lightning gradually increased. (2) The inter-annual variation of CG lightning activities was unevenly distributed. The monthly variation of CG lightning activity was unimodal. The peak was in July, and the lightning activities mainly occurred from April to September, accounting for 96.3% of all the activities in the whole year. The diurnal variation of lightning activity was characterized by double peaks. The peak at night was concentrated at 00:00-04:00, and the peak at daytime was concentrated at 14:00-18:00. The number of CG lightning activity during 08:00-12:00 was the lowest. The monthly and seasonal changes in CG lightning activity were mainly dominated by large-scale weather systems. (3) The influence of topography and altitude on CG lightning activity was mainly reflected in the significant differences in diurnal changes. In basins, hills, and low mountainous areas with an altitude less than 1000 m, the frequency of CG lightning at nighttime was significantly higher than that in the daytime. In high mountainous areas with an altitude more than 1000 m above sea level, the frequency of CG lightning during the day was more than that at night. The higher the altitude, the more likely lightning would occur during the day. (4) The current intensity of the positive CG lightning was obviously greater than that of negative CG lightning, and the influence of terrain and altitude changes on the current intensity of the CG lightning was not obvious.
-
表 1 总地闪频数、正地闪占比和海拔高度的相关性检验
地闪参数 海拔高度/m 总地闪频数/次 Pearson相关系数 -0.35 显著性水平(P) 0.00 正地闪占比/% Pearson相关系数 0.38 显著性水平(P) 0.00 表 2 2008—2020年重庆各区域地闪频数昼夜比统计(包括整个区域)
区域 整个区域 西部 主城 西南部 中部 东南部 东北部 白天地闪频数 1 003 237 118 277 103 982 174 601 119 154 183 321 303 902 夜间地闪频数 1 304 024 354 005 152 597 164 601 140 877 204 110 287 834 频数昼夜比 0.77 0.33 0.68 1.05 0.85 0.89 1.06 -
[1] 陆亚龙, 肖功建. 气象灾害及其防御[M]. 北京: 气象出版社, 2001. [2] 张义军, 马明, 吕伟涛, 等. 闪电活动的气候学特征研究进展[J]. 气象学报, 2008, 66(6): 906-915. [3] YANG X, SUN J, LI W. An Analysis of Cloud-to-ground lightning in China during2010-13[J]. Wea Forecasting, 2015, 30(6): 1537-1550. [4] 王娟, 谌芸. 2009-2012年中国闪电分布特征分析[J]. 气象, 2015, 41(2): 160-170. [5] 王义耕, 陈渭民, 刘洁. TRMM卫星观测到的华南地区的闪电时空分布特征[J]. 热带气象学报, 2009, 25(2): 227-233. [6] BOURSCHEIDT V, JUNIOR O P, NACCARATO K, et al. The influence of topography on the cloud-to-ground lightning density in South Brazil[J]. Atmospheric Research, 2009, 91(2): 508-513. [7] SMITH J R, FUELBERG H E, WATSON A I. Warm Season Lightning Distributions Over the Northern Gulf of Mexico Coast and Their Relation to Synoptic-scale and Mesoscale Environments[J]. Wea Forecasting, 2005, 20(4): 415-438. [8] KOTRONI V, LAGOUVARDOS K. Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the mediterranean [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D21). [9] 刘海兵, 张云峰, 李玉塔. 江西闪电特征海拔高度影响分析[J]. 气象科技, 2017, 45(2): 342-348. [10] 刘雪涛, 谢屹然, 许迎杰, 等. 云南闪电活动的时空分布特征[J]. 干旱气象, 2019, 37(5): 729-735, 746. [11] 王学良, 余田野, 贺姗, 等. 区域海拔高度对云地闪电参数分布的影响[J]. 高电压技术, 2020, 46(4): 1206-1215. [12] 李家启, 李良福, 覃彬全. 雷电灾害典型案例分析[M]: 北京: 气象出版社, 2007. [13] 李家启, 吉莉, 李强, 等. 基于闪电定位系统的重庆地区地闪日分布特征分析①[J]. 西南师范大学学报(自然科学版), 2013, 38(11): 109-115. [14] 李家启, 申双和, 夏佰成, 等. 重庆地区1999~2008年雷电参数变化特征[J]. 长江流域资源与环境, 2012, 21(2): 242-250. [15] 赵生昊, 覃彬全, 刘青松. 重庆市地形对雷电灾害主要致灾因子影响分析[J]. 气象科技, 2020, 48(1): 127-131. [16] 任照环, 许伟, 余蜀豫, 等. 重庆市雷电灾害区划[J]. 中国农业资源与区划, 2020, 41(4): 317-324. [17] 冯民学, 韦海容, 焦圣明, 等. 南京市闪电定位资料的对比分析[J]. 南京气象学院学报, 2008, 123(2): 151-157. [18] 王志超, 庞文静, 梁丽, 等. ADTD闪电定位网在北京地区定位效率的自评估[J]. 气象科技, 2018, 46(4): 638-643, 664. [19] SMITH W H, SANDWELL D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277 (5334): 1956-1962. [20] (GB /T37047 —2018)基于雷电定位系统(LLS) 的地闪密度总则[S]. 北京: 国家标准化管理委员会, 2018. [21] 崔海华, 金晓青, 张彦勇, 等. 京津冀地区雷电活动时空分布特征[J]. 干旱气象, 2017, 35(1): 36-42. [22] 王延慧, 张建涛, 买买提艾力·买买提依明, 等. 2013—2016年新疆地闪活动特征分析[J]. 沙漠与绿洲气象, 2018, 12(2): 43-49. [23] KAR S, LIOU Y, HA K. Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea[J]. Atmospheric Research, 2009, 92(1): 80-87. [24] 李京校, 宋海岩, 肖稳安, 等. 北京及其周边地区闪电活动的时空特征[J]. 大气科学学报, 2013, 36(2): 235-245. [25] 李炳元, 潘保田, 韩嘉福. 中国陆地基本地貌类型及其划分指标探讨[J]. 第四纪研究, 2008(4): 535-543. [26] 冯桂力, 郄秀书, 吴书君. 山东地区冰雹云的闪电活动特征[J]. 大气科学, 2008, 32(2): 289-299. [27] ZHOU T, YU R, CHEN H, et al. Summer precipitation frequency, intensity, and diurnal cycle over China: a Comparison of satellite data with rain gauge observations[J]. J Climate, 2008, 21(16): 3997-4010. [28] 刘德, 张亚萍, 陈贵川. 重庆市天气预报技术手册[M]: 北京: 气象出版社, 2012. [29] 方德贤, 董新宁, 邓承之, 等. 2008~2016年重庆地区降水时空分布特征[J]. 大气科学, 2020, 44(2): 327-340. [30] 王义耕, 刘洁, 王介君, 等. 卫星观测的西南地区闪电的时空分布[J]. 大气科学学报, 2010, 33(4): 489-495. [31] 宋敏敏, 郑永光. 我国中东部3-9月云-地闪电密度和强度分布特征[J]. 热带气象学报, 2016, 32(3): 322-333. [32] 成勤, 王学良, 肖稳安, 等. 我国中部五省云地闪电时空分布特征分析[J]. 暴雨灾害, 2011, 30(3): 254-259. [33] 袁湘玲, 马虹旭, 陈石定, 等. 黑龙江省闪电活动特征及其与地面相对湿度的响应关系[J]. 气象与环境学报, 2020, 36(5): 91-96. [34] 王学良, 张科杰, 余田野, 等. 湖北地区云地闪电频次及雷电流幅值时间分布特征[J]. 电瓷避雷器, 2017, 277(3): 1-9. [35] QIE X, ZHOU Y, YUAN T. Global lightning activities and their regional differences observed from satellite[J]. Chinese Journal of Geophysics, 2003, 46(6): 1068-1077. [36] MENG Q, YAO W, XU L. Development of lightning nowcasting and warning technique and its application[J]. Advances in Meteorology, 2019, 2405936, https://doi.org/10.1155/2019/2405936.