CHARACTERISTICS OF MOMENTUM FLUX IN TYPHOON BOUNDARY LAYER USING EDDY COVARIANCE SYSTEM
-
摘要: 台风的发展维持受制于自身(内部结构)及与下垫面间的通量传输过程,利用台风“利奇马”登陆前后的涡动相关仪观测数据,分析台风过境前后地面要素变化及动量通量特征。分析结果表明:台风过境期间,地面气象要素在短时间内出现急剧的变化,动量通量在台风登陆过程中显示出“三峰”的结构,对应的摩擦速度随风速的变化以10 m/s为分界线,低风速下呈现明显的正相关性,高风速时则慢慢转为持平甚至回落;能谱分析中,峰值主要存在于0.000 2 Hz和0.06 Hz的位置上,另有一位于0.001 Hz外的较弱峰值;能量贡献上,大尺度系统占据主导作用,但中尺度对流系统与湍流尺度运动在能量贡献中同样不可忽视。Abstract: The development and maintenance of tropical cyclones are subject to the flux exchange process within itself (internal structure) and with the underlying surface. This paper uses 36-hour observational data collected by the Eddy Covariance System during the landing of Typhoon Lekima. The characteristics of ground parameters changes and momentum flux transmission are analyzed. The results show that during the landing of Typhoon Lekima, the ground parameters of the observation fields change significantly within a short period of time. The momentum flux shows a three-peak structure during the landing of the typhoon. The corresponding friction velocity changes with wind speed. It shows a clear positive correlation at a wind speed lower than 10 m/s, and it slowly turns to be flat or even falls back at a higher wind speed than 10 m/s. In the energy spectrum, the peaks mainly exist at 0.000 2 Hz and 0.06 Hz, and there is a weaker peak at 0.01 Hz. In terms of energy contribution, large-scale systems play a dominant role, while mesoscale convective systems and turbulences also contribute a lot and thus cannot be ignored.
-
Key words:
- momentum flux /
- Typhoon Lekima /
- Eddy covariance system /
- boundary layer /
- multiscale analysis
-
图 4 站点垂直风速图
实线,箱线图中边界表征意义与图 3一致。a. 三沙站40 m平台;b. 三沙站20 m平台;c. 平阳站。
表 1 3台仪器观测期间野点数量(前值为平均数,后值为最大值)
方向 三沙站40 m平台 三沙站20 m平台 平阳站 u方向 1.72,78 4.80,241 0.40,9 v方向 1.64,78 4.80,246 0.36,9 w方向 8.28,80 17.71,245 12.21,28 -
[1] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-432. [2] BLACK P G, D'ASARO E A, DRENNAN W M, et al. Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment[J]. Bull Amer Meteor Soc, 2007, 88(3): 357-374. [3] Riehl H. A model of hurricane formation[J]. J Appl Phys, 1950, 21(9): 917-925. [4] 史文浩, 汤杰, 陈勇航, 等. 多普勒激光雷达探测台风"利奇马"边界层风场精度分析[J]. 热带气象学报, 2020, 36(5): 577-589. [5] 黄艺伟, 陈淑仪, 何敏, 等. 我国台风高发期东海和南海海区GⅡRS/FY-4A温度反演廓线精度研究[J]. 热带气象学报, 2021, 37(2): 277-288 [6] WANG T, PENG Y H, ZHANG B L, et al. Move a tropical cyclone with 4D-Var and vortex dynamical initialization in WRF model[J]. J Trop Meteor, 2021, 27(3): 191-200 [7] 何文, 刘辉志, 冯健武. 城市近地层湍流通量及CO2通量变化特征[J]. 气候与环境研究, 2010(1): 21-33 [8] 孙启振, 陈锦年, 闫俊岳, 等. 2008年南海季风爆发前后西沙海域海气通量变化特征[J]. 海洋学报, 2010, 32(4): 12-23. [9] 李英, 陈联寿. 湿地边界层通量影响热带气旋登陆维持和降水的数值试验[J]. 气象学报, 2005, 63(5): 145-155. [10] 彭珍, 宋丽莉, 胡非, 等. 台风"珍珠"登陆期间动量通量的多尺度分析[J]. 热带气象学报, 2012, 28(1): 61-67. [11] 闫俊岳, 唐志毅, 姚华栋, 等. 2002年南海季风爆发前后西沙海区海-气通量交换及其变化[J]. 地球物理学报, 2005, 48(5): 1000-1010. [12] 陈陟, 李诗明, 钱粉兰, 等. 一次冷锋过境过程的中尺度通量观测[J]. 地球物理学报, 2000, 43(6): 754-761. [13] 李永平, 郑运霞, 方平治. 2009年"莫拉克"台风登陆过程阵风特征分析[J]. 气象学报, 2012, 70(6): 1188-1199 [14] BLACK P G, D'ASARO E A, DRENNAN W M, et al. Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment[J]. Bull Amer Meteor Soc, 2007, 88(3): 357-374. [15] TANG J, ZHANG J A, ABERSON S D, et al. Multilevel tower observations of vertical eddy diffusivity and mixing length in the tropical cyclone boundary layer during landfalls[J]. J Atmos Sci, 2018, 75(9): 3159-3168. [16] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422 (6929): 279-283. [17] 张荣智, 高志球, 沈新勇. 强风条件下海面拖曳系数和粗糙长度研究[J]. 海洋学报, 2013, 35(1): 76-84 [18] FRENCH J R, DRENNAN W M, ZHANG J A, et al. Turbulent fluxes in the hurricane boundary layer. Part Ⅰ: Momentum flux[J]. J Atmos Sci, 2007, 64(4): 1089-1102. [19] BALDOCCHI D, FALGE E, GU L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bull Amer Meteor So, 2001, 82(11): 2415-2434. [20] 王介民, 刘晓虎. 应用涡旋相关方法对戈壁地区湍流输送特征的初步研究[J]. 高原气象, 1990, 9(2): 120-129. [21] PILEGAARD K, HUMMELSHØJ P, JENSEN N O, et al. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest [J]. Agricultural and Forest Meteorology, 2001, 107(1): 29-41.