ANALYSIS OF A JUNE 2021 WATERSPOUT IN THE PEARL RIVER ESTUARY BASED ON TWO DUAL POLARIZATION RADARs
-
摘要: 利用常规地面和探空资料、珠海S波段双偏振多普勒天气雷达和珠海横琴X波段相控阵雷达资料对2021年6月1日发生在珠江口的水龙卷过程进行分析。研究表明:此次水龙卷过程发生在高层强辐散、中层短波槽影响、低层西南风的背景场下;极低的抬升凝结高度、较大的0~1 km风矢量差、超过超级单体发生阈值的风暴相对螺旋度,为龙卷的发生提供了较好的动力条件。两部雷达均观测到超级单体结构特征,最强反射率因子超过65 dBZ。X波段相控阵雷达资料能够清晰展现水龙卷超级单体风暴精细化演变特征,0.9 °仰角首先出现风切变,随后风切变出现高度逐渐增高,并加强为中气旋,切变最高高度达到17.1 °仰角,随后高度逐渐降低,龙卷减弱。三维反射率因子图清楚地反映了龙卷母体风暴穹窿结构形成过程,以及强反射率因子区向上延伸,变细加强,龙卷触及水面后变粗的过程。S波段雷达探测到在龙卷发生前,出现ZDR低值眼区和ρHV弧,这对于预报员提前预警以及识别龙卷具有一定帮助。Abstract: Based on conventional observation and radiosonde data, an S-band dual polarization Doppler in Zhuhai and an X-band polarimetric phased array radar in Hengqin, Zhuhai, a waterspout that occurred in the Pearl River estuary on 1 June 2021 was analyzed. The results are shown as follows. The waterspout occurred under the background of strong high-level divergence, coupled with a shortwave trough in the middle level and a southwest air flow at the low level. The genesis of the waterspout was dynamically made possible as there were extremely low levels of lifting and condensation, a large wind vector difference in the 0-to-1 km layer, and a large storm relative helicity that was more than the threshold for supercell occurrence. Both of the radars observed the characteristics of supercells with the strongest reflectivity factor over 65 dBZ. The X-band polarimetric phased array radar well revealed the refined evolution process of the waterspout supercell. A weak wind shear was first detected at the 0.9 ° elevation, and then it occurred at increasing altitudes till it intensified to a mesocyclone. The wind shear reached the maximum height of 17.1 ° in elevation before it descended gradually while the waterspout weakened. A three-dimensional chart clearly shows how a dome structure developed in the parent storm body of the waterspout and a strong reflectivity column extended upward, contracted rapidly and intensified, as the waterspout touched down on the water surface before getting thicker in diameter. A low ZDR eye and a ρHV arc were detected by the S-band dual polarization Doppler, which can be helpful for forecasters to issue warnings and identify the presence of tornadoes.
-
Key words:
- waterspout /
- supercell /
- mesocyclone /
- Doppler weather radar /
- X-band phased array radar
-
[1] 俞小鼎, 姚秀萍, 熊延南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006. [2] 范文杰, 俞小鼎. 中国龙卷的时空分布[J]. 气象, 2015, 41(7): 793-805. [3] YAO Y Q, YU X D, ZHANG Y J, et al. Climate analysis of tornadoes in China[J]. J Meteorol Res, 2015, 29(3): 359-369. [4] 冯佳玮, 闵锦忠, 庄潇然. 中国龙卷时空分布及其环境物理量特征[J]. 热带气象学报, 2017, 33(4): 530-539. [5] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展[J]. 应用气象学报, 2015, 26(6): 641-657. [6] 黄先香, 俞小鼎, 炎利军, 等. 珠江三角洲台风龙卷的活动特征及环境条件分析[J]. 气象, 45(6): 777-790. [7] 黄先香, 伍志方, 炎利军, 等. 珠江三角洲台风龙卷预警技术与2018年两次龙卷预警试验[J]. 气象科技, 2020, 48(1): 88-96. [8] 王炳赟, 魏鸣, 范广洲, 等. 1522强台风"彩虹"螺旋雨带中衍生龙卷的超级单体演变与机理研究Ⅰ: 谱宽和速度[J]. 热带气象学报, 2018, 34(4): 472-480. [9] 王炳赟, 魏鸣, 范广洲, 等. 1522强台风"彩虹"螺旋雨带中衍生龙卷的超级单体演变与机理研究Ⅱ: 回波结构和钩状回波形成机理[J]. 热带气象学报, 2018, 34(4): 481-488. [10] 傅佩玲, 胡东明, 黄浩, 等. 台风山竹(1822)龙卷的双极化相控阵雷达特征[J]. 应用气象学报, 2020, 31(6): 706-718. [11] 黄先香, 俞小鼎, 炎利军, 等. 1804号台风"艾云尼"龙卷分析[J]. 气象学报, 2019, 77(4): 645-661. [12] 陈元昭, 俞小鼎, 陈训来, 等. 2015年5月华南一次龙卷过程观测分析[J]. 应用气象学报, 2016, 27(3): 334-341. [13] 李婉仪, 黄先香, 蔡康龙, 等. 2020年5月31日佛山超级单体龙卷过程分析[J]. 气象科技进展, 2020, 10(6): 23-27. [14] THOMPSON R L, EDWARDS R, HART J A. An assessment of supercell and tornado forecast parameters with RUC-2 model close proximity sounding[C]//Preprints, 21st Conf On Severe Local Storm. San Antonio: Amer Meteor Soc, 2000: 595-598. [15] DAVIES-JONES R. Streamwise vorticity: The origin of updraft rotation in supercell storms[J]. J Atmos Sci, 1984, 41(20): 2 991-3 006. [16] TRAPPR J, STUMPF G J, MANROSS K L. A reassessment of the percentage of tornadic mesocyclones[J]. Weather Forecast, 2005, 20: 680-687. [17] 黄先香, 俞小鼎, 炎利军, 等. 广东两次台风龙卷的环境背景和雷达回波对比[J]. 应用气象学报, 2018, 29(1): 70-83. [18] RYZHKOV A V, SCHUUR T J, ZRNIC D S, et al. Polarimetric tornado detection[J]. J Appl Meteorol, 2005, 44(5): 557-570. [19] KUMJIAN M R, RYZHKOV A V. Polarimetric Signatures in Supercell Thunderstorms[J]. J Appl Meteorol Climatol, 2008, 47(7): 1940- 1961. [20] RYZHKOV A V. The impact of beam broadening on the quality of radar polarimetric data[J]. J Atmos Ocean Technol, 2007, 24(5): 729-744.