EVOLUTION CHARACTERISTIC OF MESOSCALE SYSTEM DURING "8.11", 2020 TORRENTIAL RAIN IN SICHUAN BASIN
-
摘要: 针对2020年8月11—12日四川盆地西部特大暴雨过程中尺度系统演变特征和维持机制,利用欧洲中心ERA5逐小时再分析资料以及FY-4A的云顶相当黑体温度TBB资料进行诊断分析。(1) 本次过程发生在500 hPa巴湖长波槽分裂短波和高原低槽东移发展在四川盆地停滞,副高加强西伸形成阻挡的形势下,同时200 hPa有南亚高压和高空分流区配合。(2) 在上述有利的背景条件下,中尺度系统活动经历了中尺度辐合扰动-西南涡生成发展-低空急流影响-西南涡再次发展增强等4个阶段,西南涡两个阶段的发展对降水影响最大,初生发展阶段雨强最强,再次发展阶段强降雨范围最大。(3) 西南涡在暖区内初生发展,对流不稳定性强,地面潜热和感热加热以及500 hPa层以下水汽凝结潜热加热均十分显著,在较强暖湿平流作用下,配合低层涡度拉伸项和扭转项的动力作用加强,西南涡迅速发展,但低层辐合相对较弱,正涡度柱高度仅发展至500 hPa。(4) 西南涡再次发展阶段冷平流入侵,大气斜压性增强,中高层感热和凝结潜热加热作用加大,“低层辐合-中高层辐散”的动力机制显著加强,配合垂直向上输送正涡度和涡度拉伸项的动力发展作用,西南涡发展旺盛,正涡度柱中心强度和发展高度较初始发展阶段均明显增强。Abstract: To study the evolution characteristics and maintenance mechanism of the mesoscale system during the extremely heavy rainstorm occurred during August 10—12, 2020 in the western Sichuan Basin, the present study used the ERA5 hourly re-analysis data from the European Center and the FY-4A-TBB data for analysis, and the conclusions are as follows: (1) This process occurred when short wave was split from the 500 hPa Balkhash Lake long wave trough, the plateau low trough moved eastward and stalled over the Sichuan Basin and the subtropical high strengthened westward and became an obstruction. Simultaneously, there was the South Asian high pressure and the high-altitude diversion area at the 200 hPa layer. (2) Due to the aforementioned favorable conditions, the mesoscale system experienced four key stages: mesoscale convergence disturbance, Southwest vortex generation and development, low-level jet influence, and Southwest vortex redevelopment and enhancement. The two development stages of the Southwest vortex had the greatest impact on precipitation. The rainfall intensity was the strongest during the initial development stage, and the range of heavy rainfall became the largest during the redevelopment stage. (3) The Southwest vortex developed within the warm region with strong convective instability. On the ground, the latent heat and sensible heat heating as well as the latent heat heating of water vapor condensation below the 500 hPa layer was very significant. Under the influence of relatively strong warm and wet advection, the Southwest vortex developed rapidly with the strengthening of the dynamic action of the low-level vorticity stretching term and torsional term. In contrast, the low-level convergence was relatively weak. The height of positive vorticity column only developed to the 500 hPa layer. (4) At the re-development stage of the Southwest vortex, there was cold advection invasion and atmospheric barotropism enhancement, and heating effect of sensible heat and latent heat of condensation in middle and high level all increased. In addition, the dynamic mechanism of "convergence at the lower level and divergence at the middle and high levels" was significantly strengthened. With the dynamic development effect of positive vorticity and vorticity stretch term in the vertical upward transport, the Southwest vortex developed vigorously. The strength at the center and the development height of positive vorticity column obviously strengthened compared with that at the initial development stage.
-
Key words:
- Southwest vortex /
- mesoscale system /
- positive vorticity /
- heat source /
- vorticity advection
-
图 7 同图 5,但为假相当位温(黑色实线,单位:K)和比湿(红色虚线,单位:g/kg)经向-高度剖面
表 1 中尺度系统演变过程及对应降水情况
时段 10日20—23时 11日00—05时 11日06—10时 11日11—18时 11日19时—12日03时 12日04—20时 中尺度系统 850 hPa中尺度辐合流场,700 hPa偏南气流对流单体合并加强 850 hPa低涡生成原地快速发展,700 hPa气旋性环流加强发展为圆形低涡云团 850 hPa低涡稳定,低空东南风急流建立对流云团北抬 850 hPa低涡环流减弱,低空东南风急流北抬对流云团随急流北抬,与高空槽云系合并 850 hPa低涡发展增强,700 hPa由气旋性环流发展为低涡低涡云团发展增强 850 hPa、700 hPa低涡均逐渐减弱填塞随低涡缓慢减弱 MCS活动特征 56 252 411 549 864 698 小时雨量≥20 mm累计站次及占比 2.1% 9.3% 15.1% 20.2% 31.9% 25.7% 小时雨量≥50 mm累计站次 23 79 91 114 104 18 小时雨量≥100mm累计站次 3 9 5 8 0 0 表 2 总涡度收支及各项区域平均值
单位:10-9 s-2。 时间 层次/hPa 平流项 垂直输送项 扭转项 拉伸项 总涡度收支 11日00:00 850 -0.1 1.8 -2.4 1.8 1.1 700 -0.2 -1.5 0.4 1.5 0.2 500 -0.2 0.8 -0.2 -0.2 0.2 300 0 0 -1.0 0.5 -0.5 11日03:00 850 0.2 0.4 -1.8 1.9 0.7 700 -0.2 0 0.4 1.8 2.0 500 -0.1 -0.2 0.7 -1.0 -0.6 300 0.2 -0.2 0.3 0.2 0.5 11日22:00 850 -1.2 -1.0 -1.0 4.2 1.0 700 -3.8 4.0 -2.0 0 -1.8 500 0.8 0.5 0.8 -1.8 0.3 300 -2.4 0 0.5 2.0 0.1 12日03:00 850 -1.8 -0.5 0.5 3.8 2.0 700 -4.0 0.2 -0.5 6.0 1.7 500 1.0 6.0 -4.0 0.5 3.5 300 0.3 3.8 -2.1 -1.0 1.0 -
[1] 四川省气象局. 四川天气预报手册[M]. 成都: 西南交通大学出版社, 2014: 23-24. [2] 程麟生, 郭英华. "81.7"四川暴雨期西南涡生成和发展的涡源诊断[J]. 大气科学, 1988, 11(1): 18-26. [3] 于波, 林永辉. 引发川东暴雨的西南低涡演变特征个例分析[J]. 大气科学, 2008, 32(1): 141-154. [4] 雷丽娟, 雷小途. 东海台风对四川东部暴雨的影响研究[J]. 热带气象学报, 2018, 34(3): 314-323. [5] 孙俊, 邓国卫, 张渝杰, 等. "13·6·30"遂宁市特大暴雨成因的初探[J]. 气象, 2014, 40(10): 1 174-1 182. [6] 孙建华, 李娟, 沈新勇, 等. 2013年7月四川盆地一次特大暴雨的中尺度系统演变特征[J]. 气象, 2015, 41(5): 533-543. [7] 肖递祥, 杨康权, 俞小鼎, 等. 四川盆地极端暴雨过程基本特征分析[J]. 气象, 2017, 43(10): 1 165-1 175. [8] 卢敬华. 西南低涡概论[M]. 北京: 气象出版社, 1986: 63-64. [9] 李跃清, 徐祥德. 西南涡研究和观测试验回顾及进展[J]. 气象科技进展, 2016, 6(3): 134-140. [10] FENG X Y, LIU C H, FAN G Z, et al. Climatology and structures of southwest vortices in the NCEP climate forecast system reanalysis[J]. J Climate, 2016, 29(21): 7 675-7 701. [11] 陈忠明, 闵文彬, 崔春光. 西南低涡研究的一些新进展[J]. 高原气象, 2004, 23(增刊): 1-5. [12] 陈贵川, 谌芸, 王晓芳, 等. 一次冷性停滞型西南低涡结构的演变特征[J]. 高原气象, 2018, 37(6): 1 628-1 642. [13] 康岚, 郝丽萍, 牛俊丽. 引发暴雨的西南低涡特征分析[J]. 高原气象, 2011, 30(6): 1 435-1 443. [14] 屠妮妮, 李跃清. 一次引发川东暴雨的西南涡特征分析[J]. 干旱气象, 2014, 32(6): 962 -971. [15] 翟丹华, 刘德, 李强, 等. 引发重庆中西部暴雨的西南低涡特征分析[J]. 高原气象, 2014, 33(1): 140-147. [16] FU S M, LI W L, SUN J H, et al. Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan Basin[J]. Atmos Sci Lett, 2015, 16(2): 127-134. [17] CHENG X L, LI Y Q, XU L. An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation[J]. Meteor Atmos Phys, 2016, 128(3): 373-399. [18] 邓承之, 赵宇, 牟容, 等. 一次西南涡特大暴雨过程中MCS的演变特征[J]. 气象科技, 2018, 46(1): 121-128. [19] 胡宁, 汪会. 华南一次强对流天气过程中环境条件对MCS形态特征的影响[J]. 热带气象学报, 2019, 35(5): 681-693. [20] 陈涛, 张芳华, 端义宏. 广西"6.12"特大暴雨中西南涡与中尺度对流系统发展的相互关系研究[J]. 气象学报, 2011, 69(3): 472-485. [21] 胡祖恒, 李国平, 官昌贵, 等. 中尺度对流系统影响西南低涡持续性暴雨的诊断分析[J]. 高原气象, 2014, 33(1): 116-129. [22] CHEN Y R, LI Y Q, QI D M. Analysis of the convective characteristics during the mutual evolution of an inverted trough/low vortex and its induced rainstorm over the northeastern Sichuan basin, China[J]. Meteor Atmos Phys, 2019, 131(4): 807-825. [23] 浦学敏, 白爱娟, 毛晓亮. 高原涡与西南涡相互作用引发暴雨过程及云系特征分析[J]. 气象科技进展, 2021, 11(4): 89-101. [24] 周玉淑, 颜玲, 吴天贻, 等. 高原涡和西南涡影响的两次四川暴雨过程的对比分[J]. 大气科学, 2019, 43(4): 813-830. [25] 李国平, 陈佳. 西南涡及其暴雨研究新进展[J]. 暴雨灾害, 2018, 37(4): 293-302. [26] 高笃鸣, 李跃清, 程晓龙. 基于西南涡加密探空资料同化的一次奇异路径耦合低涡大暴雨数值模拟研究[J]. 气象学报, 2018, 76(3): 343-360. [27] 程晓龙, 李跃清, 徐祥德, 等. 汛期西南涡暴雨的数值模拟研究[J]. 高原气象, 2019, 38(2): 359-367. [28] 慕丹, 李跃清. 基于ERA-interim再分析资料的近30年九龙低涡气候特征[J]. 气象学报, 2018, 76(1): 15-31. [29] 屈顶, 李跃清. 西南涡之九龙涡的三维环流和动力结构特征[J]. 高原气象, 2021, 40(6): 1 497-1 512. [30] 郭小浩, 何琰, 曹舒娅, 等. 台风"利奇马"期间苏州大暴雨物理量诊断和微物理特征分析[J]. 气象科学, 2021, 41(2): 143-152. [31] 高松影, 赵婷婷, 宋丽丽, 等. 影响东北的两个罕见气旋发展机制对比[J]. 应用气象学报, 2020, 31(5): 556-569. [32] 肖云清, 沈新勇, 张晓露, 等. 贺兰山东麓两次局地暴雨过程的湿位涡诊断分析[J]. 暴雨灾害, 2020, 39(2): 148-157. [33] 高万泉, 周伟灿, 李玉娥. 华北一次强对流暴雨的湿位涡诊断分析[J]. 气象与环境学报, 2011, 27(1) : 1-6. [34] 丁一汇. 高等天气学(第二版)[M]. 北京: 气象出版社, 2005: 407-408.