CHARACTERISTICS OF REGIONAL CLIMATE CHANGE IN SHENZHEN FROM 2011 TO 2020 BASED ON AUTOMATIC WEATHER STATIONS
-
摘要: 利用广东省深圳市30个自动气象站观测数据对深圳市近10年的气候变化趋势进行了分析,结果表明:(1)深圳市2011—2020年的平均气温增长率约1.47 ℃/(10 a),比上一个10年显著增加,气候变暖并未停滞;(2)受城市化的影响,深圳市气温日较差在较大范围内呈减小趋势,但在少数地区却反常地呈现了上升趋势;(3)深圳的地面风速总体呈下降趋势,其中发达地区风速下降更快;(4)2011—2020年深圳市的平均相对湿度呈上升趋势,最高每年增长1.33%;(5)统计深圳各区不同时次的极端降雨量数据可以发现,未发展地区的极端降雨量增速较大,年总降水量的增长率也较高,增长率最高为42.41 mm/a,而其他地区的6 h以内的滑动降水量极大值均呈下降趋势;(6)利用多个自动气象站长时间序列数据,可以对深圳局地气候变化特征进行更加精细化的分析,这对国家基本站而言是一种有益的补充,有助于更加深刻地发掘城市化与气候变化的关系。Abstract: Based on the observation data of 30 automatic weather stations in Shenzhen, climate change trends in Shenzhen in the past 10 years are analyzed. The results are shown as follows. (1) The average air temperature grows by a rate of about 1.47 ℃/(10 a) in Shenzhen from 2011 to 2020, significantly higher than that in the previous decade, suggesting that climate warming has not eased yet. (2) Due to the effect of urbanization, daily temperature ranges show a decreasing trend over much of Shenzhen, while an abnormal upward trend is witnessed for a few limited areas. (3) Surface wind speeds in Shenzhen generally show a decreasing trend, which is even faster in developed areas. (4) Average relative humidity in Shenzhen shows an increasing trend from 2011 to 2020, with the maximum annual increase at 1.33%. (5) According to the statistics of extreme rainfall data at different spans of time in the districts of Shenzhen, the growth rates of extreme rainfall and annual total precipitation are large in undeveloped areas, with the highest growth rate at 42.41 mm/a, while the maximum value of moving precipitation with duration less than 6 hours shows a decreasing trend in other areas. (6) By using long-time series data of multiple automatic weather stations, a more detailed analysis can be done of the local climate change characteristics for Shenzhen, which is a useful supplement to analyses based on national basic stations data and helpful for deeper exploration of the relationship between urbanization and climate change.
-
Key words:
- Shenzhen /
- urban climate /
- climate change /
- automatic weather station /
- urbanization
-
表 1 深圳各区观测站
区 宝安 大鹏 福田 光明 龙岗 龙华 罗湖 南山 坪山 盐田 宝安 土洋 竹子林 光明 龙城 大浪 清水河 南山 坪山 三洲田 站点 万丰 桔钓沙 梅林水库 公明 南湾 观湖 桂园 西丽 坑梓 背仔角 福永 龙岐 红树林 塘家 平湖 民治 罗芳 左炮台 沙湖 沙头角 -
[1] IPCC. Climate change 2013: the physical science basis[M]. Cambrdge: Cambridge Press, 2013. [2] 童宣, 严中伟, 李珍, 等. 近百年中国两次年代际气候变暖中的冷、暖平流背景[J]. 气象学报, 2018, 76(4): 554-565. [3] WANG J, YAN Z W. Urbanization-related warming in local temperature records: a review[J]. Atmospheric Oceanic Science Letters, 2016, 9 (2): 129-138. [4] FOLEY J A, DEFRIES R, ASNER G P, et al. Global consequences of land use[J]. Science, 2005, 309(5 734): 570-574. [5] LUO M, LAU N-C. Amplifying effect of ENSO on heat waves in China[J]. Climate Dynamics, 2018, 52(5): 3 277-3 289. [6] LI L J, TAO G, LUO M, et al. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China - ScienceDirect[J]. Science of The Total Environment, 2020, 744. [7] WANG D, JIANG P, WANG G, et al. Urban extent enhances extreme precipitation over the Pearl River Delta, China[J]. Atmospheric Science Letters, 2015, 16(3): 310-317. [8] ZHANG Y J, GAO Z Q, PAN Z T, et al. Spatiotemporal variability of extreme temperature frequency and amplitude in China[J]. Atmospheric Research, 2017, 185: 131-141. [9] PENG X, SHE Q, LONG L, et al. Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China[J]. Atmospheric Research, 2017, 195: 20-30. [10] GRIMMOND S. Urbanization and global environmental change: local effects of urban warming[J]. The Geographical Journal, 2007, 173 (1): 83-88. [11] VAUTARD R, CATTIAUX J, YIOU P, et al. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness [J]. Nature Geoscience, 2010, 3(11): 756-761. [12] WANG X, YAN F, SU F. Impacts of urbanization on the ecosystem services in the Guangdong-Hong Kong-Macao Greater Bay Area, China [J]. Remote Sensing, 2020, 12(19): 3 269-3 269. [13] 赖鑫, 卢超, 李磊, 等. 深圳不同发展程度地区的舒适度特征分析[J]. 热带气象学报, 2020, 36(2): 38-46. [14] 张恩洁, 赵昕奕, 张晶晶. 近50年深圳气候变化研究[J]. 北京大学学报(自然科学版), 2007, 43(4): 535-541. [15] 司鹏, 李庆祥, 李伟, 等. 城市化对深圳气温变化的贡献[J]. 大气科学学报, 2010, 33(1): 110-116. [16] 张立杰, 李磊. 近20年深圳城市气候环境研究的进展[J]. 广东气象, 2017, 39(1): 48-52. [17] LI L, CHAN W P, WANG D, et al. Rapid urbanization effect on local climate: intercomparison of climate trends in Shenzhen and Hong Kong, 1968-2013[J]. Climate Research, 2015, 63(2): 145-155. [18] 韩靓. 珠三角城市群人口城市化特征及机制演化——兼与长三角, 京津冀城市群比较分析[J]. 深圳社会科学, 2019, 6(4): 27-37, 157. [19] LI L, CHAN P W, DENG T, et al. Review of advances in urban climate study in the Guangdong-Hong Kong-Macau Greater Bay Area, China[J]. Atmospheric Research, 2021, 261: 105759. [20] 毛夏, 李磊, 江崟, 等. 深圳超大城市气象探测数据在科学研究中的应用[J]. 广东气象, 2017, 39(6): 2-5. [21] 李磊. 基于应对局地气候变化需求的深圳城市气候服务[J]. 气象科技进展, 2019, 9(3): 112-118. [22] 张恩洁, 张晶晶, 赵昕奕, 等. 深圳城市热岛研究[J]. 自然灾害学报, 2008, 17(2): 19-24. [23] 张立杰, 李磊, 江崟, 等. 基于自动站观测资料的深圳城市热岛研究[J]. 气候与环境研究, 2011, 16(4): 479-486. [24] 刘伟东, 尤焕苓, 孙丹. 1961-2010年京津冀及其周边区域温度日较差变化特征[J]. 气候与环境研究, 2016, 21(2): 167-174. [25] WU M, LUO Y, ZHENG Y P, et al. Study of the vertical wind field structure and its relationship with PM2.5 air pollution over the pearl river delta in autumn[J]. J Trop Meteor, 2020, 26(1): 82-92. [26] 邓玉娇, 王捷纯, 徐杰, 等. 广东省NDVI时空变化特征及其对气候因子的响应[J]. 生态环境学报, 2021, 30(1): 37-43.