STATISTICAL ANALYSIS AND EVOLUTION CHARACTERISTICS OF THE COHERENT STRUCTURE OF STRONG TYPHOON HAGUPIT (0814)
-
摘要: 为了探究台风风场相干结构统计特性以及在台风不同空间结构部位的演化规律,采用小波系数谱分析(Spavelet Analysis)方法对0814号强台风“黑格比”风速场的湍流相干结构统计特征及演化特性进行了系统分析。研究结果表明:对于0814号强台风“黑格比”过程,顺风向脉动风速与横风向脉动风速的相干结构呈现出多尺度分布特征;顺风向、横风向和竖向风速分量的相干结构主周期均值分别为70.2 s、50.3 s、22.8 s,主尺度均值分别为54.4 s、38.9 s、18.2 s,三个方向相干结构的周期尺度比均值分别为1.28、1.27、1.29;台风“黑格比”风场水平向空间部位中,前外环流区(FOV)的顺风向、横风向和竖向的相干结构主尺度均值分别为68.8 s、41.7 s、14.4 s;前眼壁区(FEW)的三个方向脉动风速的相干结构主尺度均值分别为69.9 s、32.5 s、19.5 s;风眼区三个方向脉动风速的相干结构主尺度分别为83.5 s、50.3 s、15.3 s;后眼壁区(BEW)其值为55.1 s、42.3 s、11.2 s;后外环流区(BOV)三个方向脉动风速相干结构的主尺度分别为53.6 s、39.1 s、10.9 s;整体上表现为前外环流区(FOV)和前眼壁区(FEW)相干结构主尺度大于后眼壁区(BEW)和后外环流区(BOV),风眼区相干结构主尺度则为最大。Abstract: To explore the statistical characteristics of the coherent structure in typhoon field and its evolution in different parts of typhoon spatial structure, the present study uses spectral analysis of wavelet coefficients to comprehensively analyze the statistical characteristics and the evolution of turbulent coherent structures in strong Typhoon Hagupit (0814). The results show that for Typhoon Hagupit (0814), the coherent structures of the fluctuating wind speed of downwind and cross wind present multi-scale distribution. The mean principal periods of the coherent structures in downwind, cross wind and vertical wind are 70.2 s, 50.3 s and 22.8 s, respectively, and their mean principal scales are 54.4 s, 38.9 s and 18.2 s, respectively. The mean period scale ratios of the coherent structures in the three wind directions are 1.28, 1.27 and 1.29, respectively. The mean principal scales of the coherent structures in downwind, cross wind and vertical wind at the front outer vortex are 68.8 s, 41.7 s and 14.4 s, respectively, and the corresponding values at the front eyewall are 69.9 s, 32.5 s and 19.5 s, respectively. The mean principal scales of the coherent structures in the three wind directions at the wind eye and the back eyewall are 83.5 s, 50.3 s, and 15.3 s, and 55.1 s, 42.3 s and 11.2 s, and the corresponding values at the back outer vortex are 53.6 s, 39.1 s, and 10.9 s, respectively. Overall, the principal scale of coherent structures in the wind eye is the largest.
-
表 1 相干结构统计特征
统计特征 统计量 风向 顺风向 横风向 竖向 S* 分布/s 5~100 5~75 0~25 均值/s 54.4 38.9 18.2 标准差 31.8 30.9 22.6 T* 分布/s 15~125 5~100 0~50 均值/s 70.2 50.3 22.8 标准差 42.6 41.5 28.1 PSR 分布 1.1~1.5 1.1~1.5 1.1~1.5 均值 1.28 1.27 1.29 标准差 0.093 0.085 0.011 表 2 相干结构主尺度与主周期演化特征统计
风向 统计量 风场结构部位 FOV FEW WE BEW BOV 顺风向 均值 68.8(87.5) 69.9(90.2) 83.5(111) 55.1(70.5) 53.6(70.1) 标准差 33.5(43.6) 36.7(47.3) 4.9(6.6) 42.9(54.8) 33.3(45.7) 最大值 135.0(182.0) 140.0 (182.0) 87.0 (116.0) 149.0 (213.0) 139.0 (182.0) 横风向 均值 41.7(53.9) 32.5(40.4) 50.3(65.4) 42.3(53.9) 39.1(49.3) 标准差 30.4(40.7) 31.9(41.6) 4.9(6.83) 36.7(48.4) 27.7(34.8) 最大值 101.0 (128.0) 130.0 (160.0) 36.4(45.2) 107.0 (145.0) 94.2(116.0) 竖向 均值 14.4(18.4) 19.5(24.8) 15.3(19.5) 11.2(14.1) 10.9(13.5) 标准差 13.4(16.6) 24.2(30.7) 4.2(4.9) 20.6(24.1) 11.7(14.3) 最大值 49.1(58.2) 65.8(79.7) 17.9(23.4) 90.8(107.0) 38.1(45.7) 注:括号内数值为对应的周期数据。 -
[1] KAREEM A. Emerging frontiers in wind engineering: computing, stochastics, machine learning and beyond[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104320. doi: 10.1016/j.jweia.2020.104320 [2] CONTE J P, PENG B F. Fully nonstationary analytical earthquake Ground-Motion model[J]. Journal of Engineering Mechanics, 1997, 123(1): 15-24. doi: 10.1061/(ASCE)0733-9399(1997)123:1(15) [3] HUANG G, CHEN X. Wavelets-based estimation of multivariate evolutionary spectra and its application to nonstationary downburst winds [J]. Engineering Structures, 2009, 31(4): 976-989. doi: 10.1016/j.engstruct.2008.12.010 [4] 周广东, 丁幼亮, 李爱群, 等. 基于小波变换的非平稳脉动风时变功率谱估计方法研究[J]. 工程力学, 2013(3): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201303016.htm [5] SMITH D A, MEHTA K C. Investigation of stationary and nonstationary wind data using classical Box-Jenkins models[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49(1-3): 319-328. doi: 10.1016/0167-6105(93)90027-L [6] HUANG Z F, GU M. Characterizing nonstationary wind speed using the ARMA-GARCH model[J]. Journal of Structural Engineering, 2019, 145(1): 04018226. doi: 10.1061/(ASCE)ST.1943-541X.0002211 [7] 邱翔, 刘宇陆. 湍流的相干结构[J]. 自然杂志, 2004, 26(4): 187-193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ200404000.htm [8] 程雪玲, 曾庆存, 胡非, 等. 大气边界层强风的阵性和相干结构[J]. 气候与环境研究, 2007, 12(3): 227-243. https://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200703002.htm [9] CHRISTEN A, VAN GORSEL E, VOGT R. Coherent structures in urban roughness sublayer turbulence[J]. Int J Climatol, 2007, 27(14): 1 955-1 968. doi: 10.1002/joc.1625 [10] FOSTER R C. Why rolls are prevalent in the hurricane boundary layer[J]. J Atmos Sci, 2005, 62(8): 2 647-2 661. doi: 10.1175/JAS3475.1 [11] LI L, KAREEM A, HUNT J, et al. Observed sub-hectometer-scale low level jets in Surface-Layer velocity profiles of landfalling typhoons [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190(7): 151-165. [12] SHE Z. Intermittency and non-Gaussian statistics in turbulence[J]. Fluid Dynamics Research, 1991, 8(1): 143-158. [13] GILLIAM X, DUNYAK J, DOGGETT A, et al. Coherent structure detection using wavelet analysis in long time-series[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2-3): 183-195. doi: 10.1016/S0167-6105(00)00048-9 [14] 夏振炎, 靳秀青, 姜楠. 基于小波及Hilbert-Huang变换提取壁湍流相干结构[J]. 天津大学学报, 2012, 45(4): 373-378. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201204016.htm [15] 许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45(1): 111-140. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500004.htm [16] CAMPOREALE E, SORRISO-VALVO L, CALIFANO F, et al. Coherent structures and spectral energy transfer in turbulent plasma: a space-filter approach[J]. Physical Review Letters, 2018, 120(12): 125101. doi: 10.1103/PhysRevLett.120.125101 [17] PETENKO I V, BEZVERKHNII V A. Temporal scales of convective coherent structures derived from sodar date[J]. Meteor Atmos Phys, 1999, 71(1): 105-116. [18] PETENKO I V. Advanced combination of spectral and wavelet analysis ('Spavelet Analysis')[J]. Bound-Layer Meteor, 2001, 100: 287-299. [19] 全利红, 胡非, 程雪玲. 用小波系数谱方法分析湍流湿度脉动的相干结构[J]. 大气科学, 2007, 31(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200701005.htm [20] 张宏升, 康凌, 张霭琛. 大气湍流数据处理系统及计算方法的讨论[J]. 气象水文海洋仪器, 2001(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QXSW200101000.htm [21] 姚菡. 南海大气边界层湍流结构及输送特征[D]. 青岛: 中国海洋大学, 2011: 68. [22] 肖仪清, 李利孝, 宋丽莉, 等. 基于近海海面观测的台风黑格比风特性研究[J]. 空气动力学学报, 2012, 30(3): 380-387、399. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201203017.htm [23] 中国气象局公共气象服务中心. 台风涡旋测风数据判别规范(GB/T 36745-2018)[S]. 国家市场监督管理总局, 中国国家标准化管理委员会, 2018. [24] 白士伟, 孙刚, 李学彬, 等. 小波分析在近地面湍流相干结构研究中的应用[J]. 光学学报, 2018, 38(5): 0501002. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201805002.htm -