MESO-SCALE STRUCTURE ANALYSIS OF AN ELEVATED THUNDERSTORM IN SOUTHWEST FUJIAN
-
摘要: 利用常规观测资料、ERA5再分析资料、闪电定位仪资料、福建龙岩双偏振多普勒天气雷达资料,分析了2020年春季闽西南地区的一次强对流过程。结果表明,此次过程发生在地面锋线北侧冷区内,属于典型的高架雷暴过程,产生的灾害性天气包括冰雹、短时强降水、高山站雷雨大风。500 hPa冷平流、850 hPa暖湿平流、925 hPa闽西南地区的假相当位温高能舌为高架雷暴的发生发展提供了有利的环境条件。探空显示逆温层深厚且逆温层顶温度高,暖湿气流沿着锋面被强迫抬升,至逆温层之上饱和假相当位温随高度递减,存在显著的条件不稳定,对流得到快速发展。雷达分析表明,本次高架雷暴冰雹回波自低层快速倾斜向上发展,具有发展快、强度强、降雹时间长的特征。其双偏振参数演变特征与基于地面抬升的雷暴基本一致,降雹阶段表现为CC谷、ZDR接近零、KDP小于零。降雹前回波单体中存在强ZDR和KDP柱,可以作为冰雹预报的参考,提前量达到半小时。Abstract: Using the data of automatic weather stations, ERA5 reanalysis, and a polarized doppler in Longyan, we investigated a severe convective process that happened in southwest Fujian in the spring of 2020. The results are shown as follows. This event occurred inside the cold zone north of a surface cold front, which was a typical elevated thunderstorm process, with small hail, short-duration precipitation and high-altitude gust. 500 hPa cold advection, 850 hPa warm moisture advection, and a 925 hPa high-energy tongue of pseudo-equivalent potential temperature provided favorable large-scale circulation conditions for the thunderstorm. As shown in radiosonde curves, the inversion layer was deep with a warm layer top. Warm air was forced to lift along the cold front. Saturated pseudo-equivalent potential temperature decreased with altitude, causing conditional instability above the inversion layer and fast development of convection. Radar analysis indicated that hail cells developed from the low level, characterized by fast enhancement, strong strength and sustained hail. Polarized parameters of hail echoes showed basically the same characteristics with those of the ground-based thunderstorm, with a CC trough, a ZDR close to zero, and a KDP smaller than zero. About 30 minutes prior to hail precipitation, there were intense columns of ZDR and KDP in the echo cells, which could be an important reference to hail forecast.
-
Key words:
- elevated thunderstorm /
- conditional instability /
- train effect /
- polarization parameter
-
图 7 2020年4月1日19:53—23:57图 6中单体A各层最大反射率因子时序图
黑色实线分别为0 ℃层高度和-20 ℃层高度。
-
[1] 杨波, 王园香, 蔡雪薇. 我国华南江南春季雷暴气候特征分析[J]. 热带气象学报, 2019, 35(4): 470-479. doi: 10.16032/j.issn.1004-4965.2019.043 [2] ANDERSON C J, GALLUS W A, ARRITT R W, et al. Impact of adjustments in the Kain-Fritsch convective scheme on QPF of elevated convection. Preprints[C]//19th Conf on Weather Analysis and Forecasting, San Antonio, TX, Amer Meteor Soc, 2002: 23-24. [3] 俞小鼎, 周小刚, 王秀明. 雷暴与强对流临近天气预报技术进展[J]. 气象学报, 2012, 70(3): 311-337. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201203001.htm [4] MEANS L L. On thunderstorm forecasting in the central United States[J]. Mon Wea Rev, 1952, 80(10): 165-189. doi: 10.1175/1520-0493(1952)080<0165:OTFITC>2.0.CO;2 [5] COLMAN B R. Thunderstorms above frontal surfaces in environments without positive CAPE. Part Ⅰ: A climatology[J]. Mon Wea Rev, 1990, 118(5): 1 103-1 122. doi: 10.1175/1520-0493(1990)118<1103:TAFSIE>2.0.CO;2 [6] COLMAN B R. Thunderstorms above frontal surfaces in environments without positive CAPE. Part Ⅱ: Organization and instability mechanisms[J]. Mon Wea Rev, 1990, 118(5): 1 123-1 144. doi: 10.1175/1520-0493(1990)118<1123:TAFSIE>2.0.CO;2 [7] HORGAN K L, SCHULTS D M, HALES J E, et al. A five-year climatology of elevated severe convective storms in the United States east of the Rocky Mountains[J]. Wea Forecasting, 2007, 22(5): 1 031-1 044. doi: 10.1175/WAF1032.1 [8] GRANT B N. Elevated cold-sector severe thunderstorms: a preliminary study[J]. Natl Wea Dig, 1995, 19(4): 25-31. [9] 盛杰, 毛冬艳, 沈新勇, 等. 我国春季冷锋后的高架雷暴特征分析[J]. 气象, 2014, 40(9): 1 058-1 065. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201409003.htm [10] 刘洲洋, 俞小鼎, 王秀明, 等. 中国泛华北地区冷季高架对流特征气候统计分析[J]. 气象, 2018, 44(2): 258-267. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201802005.htm [11] 苟阿宁, 高正旭, 候静, 等. 基于雷达和微波辐射计的湖北省冷季"高架雷暴" 特征分析[J]. 热带气象学报, 2020, 36(4): 528-541. doi: 10.16032/j.issn.1004-4965.2020.049 [12] 郭荣芬, 鲁亚斌, 高安生, 等. 低纬高原罕见"雷打雪"中尺度特征分析[J]. 气象, 2009, 35(2): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200902009.htm [13] 郑丽娜, 靳军. "2.28" 山东罕见"雷打雪" 现象形成机制分析[J]. 高原气象, 2012, 31(4): 1 151-1 157. https://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201204032.htm [14] 苏德斌, 焦热光, 吕达仁. 一次带有雷电现象的冬季雪暴中尺度探测分析[J]. 气象, 2012, 38(2): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201202012.htm [15] 许爱华, 陈云辉, 陈涛, 等. 锋面北侧冷气团中连续降雹环境场特征及成因[J]. 应用气象学报, 2013, 24(2): 197-206. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201302012.htm [16] 吴乃庚, 林良勋, 冯业荣, 等. 2012年初春华南"高架雷暴"天气过程成因分析[J]. 气象, 2013, 39(4): 410-417. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201304003.htm [17] 张一平, 俞小鼎, 孙景兰, 等. 2012年早春河南一次高架雷暴天气成因分析[J]. 气象, 2014, 40(1): 48-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201401006.htm [18] MARKOWSKI P, RICHARDSON Y. Mesoscale meteorology in mid-latitudes[M]. Chichester, UK: John Wiley & Sons Ltd, 2010. [19] 李怀宇, 张羽, 罗聪. 2012年初春粤北一次少见高架雷暴过程的分析[J]. 广东气象, 2013, 35(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDCX201303001.htm [20] 陈潇潇, 钱昊钟, 周彬, 等. 沿江苏南一次伴随"高架雷暴" 的暴雪天气成因分析[J]. 大气科学学报, 2015, 38(6): 836-844. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201506013.htm [21] 俞小鼎, 周小刚, 王秀明. 中国冷季高架对流个例初步分析[J]. 气象学报, 2016, 74(6): 902-918. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201606007.htm [22] HOLT M W, THORPE A J. Localized forcing of slantwise motion at fronts[J]. Quart J Roy Meteor Soc, 1991, 117(501): 943-963. [23] 黄小刚, 费建芳, 孙吉明, 等. 2013年冬季长江中下游地区一次高架雷暴过程的成因分析[J]. 气象学报, 2017, 75(3): 429-441. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201703005.htm [24] 王娟, 谌芸. 2009—2012年中国闪电分布特征分析[J]. 气象, 2015, 41(2): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201502004.htm [25] 俞小鼎. 关于冰雹的融化层高度[J]. 气象, 2014, 40(6): 649-654. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201406001.htm [26] 范皓, 杨永胜, 段英, 等. 太行山东麓一次强对流冰雹云结构的观测分析[J]. 气象学报, 2019, 77(5): 823-834. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201905003.htm [27] 林文, 张深寿, 罗昌荣, 等. 不同强度强对流云系S波段双偏振雷达观测分析[J]. 气象, 2020, 46(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX202001006.htm [28] SNYDER J C, RYZHKOV A V, KUMJIAN M R, et al. A ZDR column detection algorithm to examine convective storm updrafts[J]. Wea Forecasting, 2015, 30(6): 1 819-1 844. -