[1] |
夏军, 谈戈. 全球变化与水文科学新的进展与挑战[J]. 资源科学, 2002, 24(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200203000.htm
|
[2] |
ADLER R F, HUFFMAN G J, CHANG A, et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present)[J]. Journal of Hydrometeorology, 2003, 4(6): 1 147-1 167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
|
[3] |
谈戈, 夏军, 李新. 无资料地区水文预报研究的方法与出路[J]. 冰川冻土, 2004, 26(2): 192-196. doi: 10.3969/j.issn.1000-0240.2004.02.013
|
[4] |
SU F F, HONG Y, LETTENMAIER D P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin[J]. Journal of Hydrometeorology, 2008, 9(4): 622-640. doi: 10.1175/2007JHM944.1
|
[5] |
BOTLE J S. Comparison of variability of the monthly mean temperature of the ECMWF and NCEP reanalyses and CCM3 and DSM simulations[R]. Livermore: Lawrence Livermore National Lab, 2000.
|
[6] |
HNILO J J, SANTER B D, BOYLER J, et al. Research activities at the program for climate model diagnosis and intercomparison[C]//The 2nd International Conference on Reanalyses. Reading: 1999.
|
[7] |
STEVEN J L, HERSCHEL L M. The Canadian Meteorological Centre (CMC) global analyses (1991-1996): An evaluation by comparison with the ECMWF and NCEP analysis: Research note[J]. Atmosphere-Ocean, 1998, 36(4): 385-404. doi: 10.1080/07055900.1998.9649618
|
[8] |
张善强. 黄河流域夏季旱涝变化及气候物理因素的影响[J]. 气象与环境学报, 2011, 27(3): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201103008.htm
|
[9] |
吉奇, 宋冀凤, 刘辉. 近50年东北地区温度降水变化特征分析[J]. 气象与环境学报, 2006, 22(5): 1-5. doi: 10.3969/j.issn.1673-503X.2006.05.001
|
[10] |
海日古丽·纳麦提, 玉素甫江·如素力, 玛地尼亚提·地里夏提, 等. ERA-Interim和GHCN-CAM再分析气温数据在天山山区的适应性分析[J]. 山地学报, 2019, 37(4): 613-621. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201904014.htm
|
[11] |
HUAI B, WANG Y, DING M, et al. An assessment of recent global atmospheric reanalyses for Antarctic near surface air temperature[J]. Atmospheric Research, 2019, 226: 181-191. doi: 10.1016/j.atmosres.2019.04.029
|
[12] |
JONES R W, RENFREW Ⅰ A, ORR A, et al. Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica[J]. J Geophy Res: Atmos, 2016, 121(11): 6 240-6 257. doi: 10.1002/2015JD024680
|
[13] |
MARSHALL G J, KIVINEN S, JYLHA K, et al. The accuracy of climate variability and trends across Arctic Fennoscandia in four reanalyses[J]. International Journal of Climatology, 2018, 38(10): 3 878-3 895. doi: 10.1002/joc.5541
|
[14] |
朱智, 师春香, 张涛, 等. 多种再分析地表温度资料在中国区域的适用性分析[J]. 冰川冻土, 2015, 37(3): 614-624. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201503007.htm
|
[15] |
CHEN S, GAN T Y, TAN X, et al. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China[J]. Climate Dynamics, 2019, 53: 737-757. doi: 10.1007/s00382-018-04611-1
|
[16] |
SHERIDAN S C, LEE C C, SMITH E T. A comparison between station observations and reanalysis data in the identification of extreme temperature events[J]. Geophy Res Lett, 2020, 47(15): e2020GL088120.
|
[17] |
ALBERGEL C, DUTRA E, BONAN B, et al. Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation[J]. Remote Sensing, 2019, 11(5): 520.
|
[18] |
URRACA R, HULD T, GRACIA-AMILLO A, et al. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data[J]. Solar Energy, 2018, 164: 339-354.
|
[19] |
LIU J, HAGAN D F T, LIU Y. Global land surface temperature change (2003-2017) and its relationship with climate drivers: AIRS, MODIS, and ERA5-Land based analysis[J]. Remote Sensing, 2020, 13(1): 44.
|
[20] |
XUE C, WU H, JIANG X. Temporal and spatial change monitoring of drought grade based on ERA5 analysis data and BFAST method in the Belt and Road Area during 1989-2017[J]. Advances in Meteorology, 2019, 428: 1-10.
|
[21] |
LUO B, MINNETT P. Evaluation of the ERA5 sea surface skin temperature with remotely-sensed shipborne marine-atmospheric emitted radiance interferometer data[J]. Remote Sensing, 2020, 12(11): 1 873.
|
[22] |
GLEIXNER S, DEMISSIE T, DIRO G T. Did ERA5 improve temperature and precipitation reanalysis over East Africa?[J] Atmosphere, 2020, 11(9): 996.
|
[23] |
OSES N, AZPIROZ Ⅰ, MARCHI S, et al. Analysis of copernicus'ERA5 climate reanalysis data as a replacement for weather station temperature measurements in machine learning models for olive phenology phase prediction[J]. Sensors, 2020, 20(21): 6 381.
|
[24] |
SHERIDAN S C, LEE C C, SMITH E T. A comparison between station observations and reanalysis data in the identification of extreme temperature events[J]. Geophysical Research Letters, 2020, 47(15): e2020GL088120.
|
[25] |
李翔翔, 黄淑娥, 杨军, 等. 多种再分析地面气温资料在江西省的适用性[J]. 气象科技, 2020, 48(6): 877-886. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ202006015.htm
|
[26] |
朱景, 袁慧珍. ERA再分析陆面温度资料在浙江省的适用性[J]. 气象科技, 2019, 47(2): 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201902014.htm
|
[27] |
郑艳萍. ERA5再分析资料在广东省的适用性初步分析[C] //中国气象学会. 第35届中国气象学会年会S20深度信息化: 应用支持与智能发展, 2018: 334-340.
|
[28] |
孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J]. 海洋气象学报, 2018, 38(1): 91-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SDQX201801011.htm
|