CHARACTERISTICS AND MECHANISMS OF THE SPATIOTEMPORAL RAINFALL DISTRIBUTION DURING THE WARM SEASON OVER SICHUAN PROVINCE
-
摘要: 特殊的地理位置和地形分布造成四川地区降水具有鲜明特色,存在明显的区域差异。利用1998— 2017年共20年的高时空分辨率卫星反演CMORPH降水资料,研究四川省暖季(4—9月)降水的时空分布特征,并结合ERA5再分析资料探究其降水的内在机制。研究发现:(1)4—5月降水量偏低,6—8月最多,9月也相对较少。暖季的逐月降水在四川盆地西南部均有一个强降水中心,而6—9月在四川省最南部存在一个强度相当的降水中心,这种分布特征是由高低层大尺度环境场的配置所引起;(2)四川暖季降水峰值出现在夜间至凌晨,但不同月份以及不同区域的降水存在较大的差异,两个夜间降水峰值中心的形成均与地形造成的低层风场辐合以及水汽累积密切相关;(3)位于四川省西部(青藏高原的东坡)有一个相对较弱的午后降水峰值,这是受到两侧的山谷风辐合所致,且受到高低层环境场作用影响其分布区域和强度。Abstract: The special geographical position and complex topography of Sichuan lead to distinct features of the precipitation with significantly regional differences over the province. In this study, the characteristics and the underlying mechanisms of the warm season (from April to September) precipitation are investigated through the satellite-retrieved CMORPH rainfall data with high spatiotemporal resolution and the ERA5 reanalysis data for the 1998-2017 period. The results are shown as follows. (1) Large rainfall amount differences exist over the months from April to September, with the smallest rainfall in April and May, largest in June, July and August, and relatively small in September, due to the great impact by the allocation between the upper-level and low-level environmental fields. Two monthly heavy rainfall centers are found, located over the southwestern Sichuan basin for the whole warm season and the southernmost area of the province June through September, respectively. (2) Diurnal precipitation cycles are with nocturnal peaks in all months over the province, though spatial distributions differ much among individual months and regions. It is demonstrated that the rainfall is closely associated with the convergence of terrain-related low-level wind fields and accumulated moisture content. (3) A secondary relatively weak and movable rainfall peak appears over western Sichuan (i.e. the eastern slope of the Tibet Plateau) in the afternoon, caused by the wind convergence from the east and west sides of mountains. The distribution area and intensity of the peak are much subject to upper - and low-level wind fields and topographic effects.
-
Key words:
- Sichuan province /
- diurnal cycle /
- nocturnal precipitation /
- complex topography
-
图 7 与图 6类似,但变量为地面10 m风场(m/s)和2 m温度场(℃)
其中绿色曲线为四川省省界。
图 8 7月每3小时一次的沿着图 1中的30 °N做的垂直剖面的风场(m/s)和水汽比湿场(g/kg)
图 9 7月每3小时一次的沿着图 1中沿着27 °N做的垂直剖面的风场(m/s)和水汽比湿场(g/kg)
-
[1] ZHENG Y, XUE M, LI B, et al. Spatial characteristics of extreme rainfall over china with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data[J]. Adv Atmos Sci, 2016, 33(11): 1 218-1 232. doi: 10.1007/s00376-016-6128-5 [2] 罗亚丽, 孙继松, 李英, 等. 中国暴雨的科学与预报: 改革开放40年研究成果[J]. 气象学报, 2020, 78(3): 419-450. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB202003007.htm [3] 宋连春. 中国气象灾害年鉴(2020)[M]. 北京: 气象出版社, 2020: 139-141. [4] 丁一汇, 柳艳菊, 宋亚芳. 东亚夏季风水汽输送带及其对中国大暴雨与洪涝灾害的影响[J]. 水科学进展, 2020, 31(5): 629-643. doi: 10.14042/j.cnki.32.1309.2020.05.001 [5] 胡迪, 李跃清. 青藏高原东侧四川地区夜雨时空变化特征[J]. 大气科学, 2015, 39(1): 161-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201501013.htm [6] CHEN J, ZHENG Y, ZHANG X, et al. Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China[J]. Acta Meteorologica Sinica, 2013, 27(6): 868-888. doi: 10.1007/s13351-013-0605-x [7] FU S, MAI Z, SUN J, et al. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation[J]. J Atmos Sci, 2019, 76(12): 3 803-3 830. doi: 10.1175/JAS-D-18-0331.1 [8] CAO B, YANG X, Li B, et al. Diurnal variation in cloud and precipitation characteristics in summer over the Tibetan Plateau and Sichuan Basin[J]. Remote Sens. 2022, 14(11): 2 711. doi: 10.3390/rs14112711 [9] BAO X, ZHANG F, and SUN J. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China [J]. Mon Wea Rev, 2011, 139(9): 2 790-2 810. doi: 10.1175/MWR-D-11-00006.1 [10] 叶笃正, 高由禧. 青藏高原气象学[M]. 科学出版社, 1979: 19-22. [11] 罗娟, 邓承之, 高松, 等. 武陵山区一次暖区强降水触发和维持机制分析[J]. 热带气象学报, 2022, 38(5): 754-766. doi: 10.16032/j.issn.1004-4965.2022.070 [12] ZHANG Y, ZHANG F, SUN J. Comparison of the diurnal variations of warm-season precipitation for East Asia vs. North America downstream of the Tibetan Plateau vs. the Rocky Mountains[J]. Atmospheric Chemistry and Physics, 2014, 14(19): 10 741-10 759. doi: 10.5194/acp-14-10741-2014 [13] ZHANG S, LIANG Z, WANG D, et al. Nocturnal convection initiation over inland South China during a record-breaking heavy rainfall event[J]. Mon Wea Rev, 2022, 150(11): 2 935-2 957. doi: 10.1175/MWR-D-21-0264.1 [14] QIU D, YAO S, XIA Y. Pre-summer persistent heavy Rain over Southern China and its relationship with intra-seasonal oscillation of tropical atmosphere [J]. J Trop Meteor, 2022, 28(4): 445-456. doi: 10.46267/j.1006-8775.2022.033 [15] Qian T, ZHAO P, ZHANG F, et al. Rainy-season precipitation over the Sichuan Basin and adjacent regions in Southwestern China[J]. Mon Wea Rev, 2015, 143 (1): 383-394. doi: 10.1175/MWR-D-13-00158.1 [16] WANG X, XUE M, ZHU K, et al. Diurnal variation of summer monsoon season precipitation over Southern Hainan Island, China: The role of boundary layer inertial oscillations over indochina peninsula[J]. J Geophy Res: Atmos, 2022, 127(23): e2022JD037114. [17] 刘楚薇, 饶建, 吴志文, 等. ENSO与中国夏季降水的联系: 冬季QBO的调制作用[J]. 热带气象学报, 2019, 35(2): 210-223. doi: 10.16032/j.issn.1004-4965.2019.019 [18] 李强, 王秀明, 张亚萍, 等. 一次副高影响下的局地强风暴触发及维持机制探析[J]. 气象, 2019, 45(2): 203-215. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201902006.htm [19] CHEN G. Diurnal cycle of the Asian Summer Monsoon: Air pump of the second kind[J]. J Climate, 2020, 33(5): 1 747-1 775. doi: 10.1175/JCLI-D-19-0210.1 [20] LI J, LI Y, ZHAO T, et al. Northeastward propagation of nocturnal precipitation over the Sichuan Basin[J]. International Journal of Climatology, 2021, 41: E2863-E2879. [21] CHEN H, LI J, YU R. Warm season nocturnal rainfall over the eastern periphery of the Tibetan Plateau and its relationship with rainfall events in adjacent regions[J]. International Journal of Climatology, 2018, 38(13): 4 786-4 801. doi: 10.1002/joc.5696 [22] YU R, YUAN W, LI J, et al. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China[J]. Climate Dynamics, 2010, 35(4): 567-576. [23] ZHANG Y, XUE M, ZHU K, et al. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low‐level jet inertial oscillations[J]. J Geophy Res: Atmos, 2019, 124(5): 2 643-2 664. [24] XIA R, LUO Y, ZHANG D, et al. On the diurnal cycle of heavy rainfall over the Sichuan Basin during 10-18 August 2020[J]. Adv Atmos Sci, 2021, 38(12), 2 183-2 200. [25] 孙云华, 杨星, 崔希民. 高分辨率卫星反演降水数据在四川省的适用性分析[J]. 气候变化研究快报, 2018, 7(5): 329-340. [26] 王福增, 何山, 谷晓平, 等. 贵州地区CMORPH卫星降水产品的误差订正[J]. 热带气象学报, 2021, 37(2): 166-174. doi: 10.16032/j.issn.1004-4965.2021.016 [27] HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quart J Roy Meteor Soc, 2020, 146(730): 1 999-2 049. [28] ZHU L, MENG Z, ZHANG F, et al. The influence of sea- and land-breeze circulations on the diurnal variability of precipitation over a tropical island[J]. Atmos Chem Phys, 2017, 17(21): 13 213-13 232. [29] ZHU L, BAI L, CHEN G, et al. Convection Initiation Associated with Ambient Winds and Local Circulations Over a Tropical Island in South China[J]. Geophys Res Lett, 2021, 48(16): e2021GL094382. [30] ZHU L, CHEN X, and BAI L. Relative roles of low-level wind speed and moisture in the diurnal cycle of rainfall over a tropical island under monsoonal flows[J]. Geophys Res Lett, 2020, 47(8): e2020GL087467. [31] 张华龙, 肖柳斯, 陈生, 等. 基于GPM卫星的广东汛期降水日变化特征与评估[J]. 热带气象学报, 2020, 36(3): 335-346. doi: 10.16032/j.issn.1004-4965.2020.032 [32] 杜爽, 王东海, 李国平, 等. 基于双频星载降水雷达GPM数据的华南地区降水垂直结构特征分析[J]. 热带气象学报, 2020, 36(1): 115-130. doi: 10.16032/j.issn.1004-4965.2020.012 -