SYNOPTIC ANALYSIS OF THE EXTREME RAINFALL IN SHANDONG PROVINCE CAUSED BY THE FRONTOGENESIS OF TYPHOON LEKIMA DURING ITS NORTHWARD MOVEMENT
-
摘要: 利用常规气象观测、NCEP/NCAR再分析、风廓线雷达及逐时自动气象站降雨量等资料,对2019年8月10—13日台风“利奇马”造成山东省有气象记录以来最大一次特大暴雨进行了成因分析。结果表明(: 1)此次台风特大暴雨主要为中低纬系统相互作用及台风倒槽直接影响产生,其与冷空气密切相关,冷暖空气交汇的位置正对应强降水落区;(2)特大暴雨发生在θse密集带上冷暖空气交汇的对流不稳定强烈发展的锋生区域。锋生大值中心与特大暴雨中心对应较好,锋生强度对未来6小时降雨预报有指示作用;(3)切变变形锋生为总锋生的主要正贡献,强降水区位于θse密集带上风向曲率最大的地方,在台风预报业务中要注意等θse线密集带上是否出现“对头风”的明显风向切变;(4)强锋生次级环流与台风倒槽辐合及冷暖空气交汇等共同作用导致动力抬升快速增强,促使对流不稳定能量大量释放形成强降水。锋生次级环流上升支最强的区域,正对应降水最强的区域,也是冷暖空气交汇区域;(5)风廓线雷达超低空风场的变化对小时雨强大小有明显的指示意义。近地面层风向发生突变,由东南风转北风的时段与潍坊出现山东全省最大小时雨强的时段一致。低空急流向低空的快速扩展对应着短时强降水的开始。近地面层暖平流的强弱变化影响着此次强降雨的雨强大小。Abstract: Based on the conventional meteorological observation data, the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), the wind profile radar data, and the hourly precipitation data from automatic weather stations, synoptic analysis of the severest extraordinary heavy rain ever recorded in Shandong Province caused by Typhoon Lekima from August 10 to 13, 2019 are studied in this paper. The results show that this typhoon heavy rainfall episode is mainly caused by the interaction of the middle and low latitude weather systems, as well as the typhoon inverted trough. Moreover, it is closely related to cold air. The place where the cold and warm air intersects is the area where heavy rainfall occurs. This extraordinary heavy rain episode occurs in the frontogenetical area in the dense area of iso-θse (potential pseudo-equivalent temperature) lines, where the convergence of cold and warm air leads to the strong development of convective instability. The largevalue center of frontogenesis has good correspondence with the center of the extraordinarily heavy rain, and the intensity of frontogenesis can well indicate the rainfall intensity in the next 6 hours. The positive contribution of the total frontogenesis mainly comes from the shear deformation. The area with heavy precipitation is located in the place with the largest curvature of wind direction in the dense area of iso-θse lines. Thus, in the typhoon forecast operation, whether there is an obvious wind direction shear of "opposite wind"in the dense area of iso-θse lines should be noted. With strong water vapor transport and strong convective instability formed by the low-level jet, the combined effects of the convergence in the typhoon inverted trough, cold-warm air convergence and strong frontal secondary circulation lead to a rapid intensification of the dynamic lifting. Therefore, with the release of convective instability energy, heavy rainfall occurs. The area with the strongest ascending motion of the frontal secondary circulation corresponds to the area with the strongest rainfall, which is also the area where the cold and warm air intersects. The variation of the wind field in ultra-low levels from the wind profile radar has important indicative significance for the rainfall intensity.
-
Key words:
- typhoon /
- extraordinary heavy rain /
- cold air /
- frontogenesis function /
- frontal secondary circulation
-
-
[1] 陈联寿, 丁一汇. 西北太平洋台风概论[M]. 北京: 科学出版社, 1979. [2] 周冠博, 林青, 高守亭, 等. 斜压涡度的变化与台风暴雨的关系研究[J]. 热带气象学报, 2019(6): 732-741. [3] 韩芙蓉, 鹿翔, 冯晓钰, 等. 台风Lekima(1909)登陆前后动热力结构变化对浙江极端降水的影响[J]. 热带气象学报, 2021, 37(1): 34-48. [4] 李慧芹, 李江南, 于艳, 等. 一次海南秋季台风暴雨的特征和成因分析[J]. 热带气象学报, 2018, 34(1): 133-144. [5] 高晓梅, 江静, 刘畅, 等. 近67a影响山东台风频数的变化特征及其与若干气候因子的关系[J]. 气象科学, 2018, 38(6): 749-758. [6] 姜嘉俊, 钱燕珍, 段晶晶, 等. 浙江大暴雨与南海台风"山竹"相关性数值研究[J]. 热带气象学报, 2022, 38(1): 68-80. [7] 朱莉, 王治国, 李华宏, 等. 西行台风背景下云南一次短时强降水过程的成因分析[J]. 热带气象学报, 2020, 36(6): 744-758 [8] 闫军, 王黎娟, 纪晓玲, 等. 影响宁夏的热带气旋远距离暴雨特征和预报概念模型[J]. 热带气象学报, 2020, 36(1): 32-41. [9] 赵思雄, 孙建华. 近年来灾害性天气机理和预测研究的进展[J]. 大气科学, 2013, 37(2): 297-312. [10] 陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3): 420-432. [11] 陶祖钰, 田佰军, 黄伟. 9216号台风登陆后的不对称结构和暴雨[J]. 热带气象学报, 1994, 10(1): 69-77. [12] HARR P A, ELSBERRY R L. Extratropical transition of tropical cyclones over the western North Pacific. Part Ⅰ: Evolution of structural characteristics during the transition process[J]. Mon Wea Rev, 2000, 128(8): 2 613-2 633. [13] KLEIN P M, HARR P A, ELSBERRY R L. Extratropical transition of western North Pacific tropical cyclones: Midlatitude contributions to intensification[J]. Mon Wea Rev, 2002, 130(9): 2240-2259. [14] 覃武, 赵金彪, 黄荣成, 等. 台风"山竹"登陆结构变化及造成广西强降水异常分布的成因分析[J]. 热带气象学报, 2019, 35(5): 587-595. [15] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第三版)[M]. 北京: 气象出版社, 2000. [16] 江雨霏, 王咏青, 刘仁强. 台风Faxai(1403)低纬变性的结构演变特征分析[J]. 热带气象学报, 2020, 36(2): 232-243. [17] 张芳华, 陈涛, 杨舒楠, 等. 一次冬季暴雨过程中的锋生和条件对称不稳定分析[J]. 气象, 2014, 40(9): 1 048-1 057. [18] 周毅, 肖坤, 宋辉. 一次台风变性过程的锋生位涡反演诊断[J]. 热带气象学报, 2010, 26(6): 694-701. [19] 刘海文, 全美兰, 朱玉祥, 等. 锋生及其次级环流对北京2012.7.21最大降水增幅和最大降水的影响[J]. 热带气象学报, 2014, 30(5): 911-920. [20] 李娜, 冉令坤, 周玉淑, 等. 北京"7.21"暴雨过程中变形场引起的锋生与倾斜涡度发展诊断分析[J]. 气象学报, 2013, 71(4): 593-605. [21] LONFAT M, MARKS Jr. F D, CHEN S S. Precipitation distribution in tropical cyclones using the tropical rainfall measuring mission (TRMM) microwave imager: A global perspective[J]. Mon Wea Rev, 2004, 132(7): 1 645-1 660. [22] 何立富, 许爱华, 陈涛. "泰利"台风低压大暴雨过程冷空气与地形的作用[J]. 气象科技, 2009, 37(4): 385-391. [23] 钮学新, 杜惠良, 刘建勇. 0216号台风降水及其影响降水机制的数值摸拟试验[J]. 气象学报, 2005, 63(1): 57-68. [24] 董美莹, 陈联寿, 郑沛群, 等. 登陆热带气旋暴雨突然增幅和特大暴雨之研究进展[J]. 热带气象学报, 2009, 25(4): 495-502. [25] 丁一汇. 天气动力学中的诊断分析方法[M]. 北京: 科学出版社, 1989. [26] 侯俊, 管兆勇. 华东地区6—7月锋生的气候学特征及环流结构[J]. 气象学报, 2013, 71(1): 1-22. [27] 李英, 陈联寿, 雷小途. 变性台风Winnie(9711)环流中的锋生现象[J]. 大气科学, 2008, 32(3): 629-639. [28] 韩桂荣, 何金海, 樊永富, 等. 变形场锋生对0108登陆台风温带变性和暴雨形成作用的诊断分析[J]. 气象学报, 2005, 63(4): 468-476. [29] 李兆慧, 王东海, 王建捷, 等. 一次暴雪过程的锋生函数和急流-锋面次级环流分析[J]. 高原气象, 2011, 30(6): 1 505-1 515. [30] 刘淑媛, 郑永光, 陶祖钰. 利用风廓线雷达资料分析低空急流的脉动与暴雨关系[J]. 热带气象学报, 2003, 19(3): 285-290. [31] 郭运, 汤胜茗, 王旭, 等. 不同台风降水强度下风廓线雷达适用性研究[J]. 热带气象学报, 2021, 37(2): 268-276.