CLIMATIC CHARACTERISTICS OF CONCURRENT TEMPERATURE AND PRECIPITATION VARIATION IN GUANGDONG DURING SPRING FESTIVAL TRAVEL RUSH OVER RECENT 50 YEARS
-
摘要: 根据近50年(1971—2020年)广东省86个气象站的观测数据、NCEP/NCAR再分析数据和NOAA海温数据,采用线性趋势分析、合成分析等统计方法,研究了广东春运期间气温和降水的时空分布特征,从气温降水协同变化的角度切入划分了气候异常类型,并对比分析了其异常成因。结果表明:近50年来,广东省春运期间平均气温呈现显著上升趋势,珠江三角洲和粤东地区最明显。而降水日数则表现出显著减少趋势,粤西北、粤东和粤西沿海最明显。气温和降水协同变化的异常年(冷湿(4年)、冷干(6年)和暖干(11年))共有21年,占全部年份的42%。冷湿年和冷干年,欧亚大陆中高纬度都表现出经向环流特征,西伯利亚高压偏强,有利于冷空气活跃南下。不同的是冷湿年东亚西部地区“北高南低”,低纬度地区“东高西低”,对应的冷空气路径为中、西路,有利于水汽输送;而冷干年东亚东部地区“北高南低”,低纬度地区一致偏低,对应的冷空气路径偏东,不利于水汽输送。另外,冷湿年前期赤道中东太平洋偏暖,呈现El Niño状态,受其影响西太平洋副热带高压偏大偏强,西太暖池偏冷,在菲律宾海区域激发出一个反气旋性环流,有利于西南水汽输送到广东地区,降水偏多;而冷干年则相反。暖干年,东亚中高纬表现出“北低南高”的纬向环流分布,东亚大槽和西伯利亚高压偏弱,不利于冷空气的生成和南下,广东上空受反气旋式环流控制,辐散下沉,温高雨少。Abstract: Based on the data from observational stations in Guangdong, the NCEP/NCAR reanalysis data, and the NOAA sea surface temperature (SST) data for the last 50 years from 1971 to 2020, this paper has analyzed the temporal and spatial distribution characteristics of temperature and precipitation during the Spring Festival travel rush in Guangdong. Possible causes of three types of climate anomalies are also investigated through comparison. The results are as follow: Over these five decades, the average temperature in Guangdong, especially in the Pearl River Delta and eastern Guangdong, showed a significant upward trend during the Spring Festival travel rush. Meanwhile, the number of rainy days in Guangdong, especially in northwestern Guangdong and the coastal regions of eastern/ western Guangdong, showed a significant decreasing trend. There were totally 21 abnormal years with different concurrent variation between temperature and precipitation, including four cold and wet years, six cold and dry years, and eleven warm and dry years. In cold and wet years and cold and dry years, the meridional circulation prevailed over the mid‐high latitudes of Eurasia and the Siberian high pressure was relatively strong, which were favorable for the southward invasion of cold air. In particular, the pattern with northward higher and southward lower geopotential height was found over the western part of East Asia during cold and wet years while over the eastern part of East Asia during cold and dry years, respectively. Moreover, cold air invaded through the middle and the west paths when the geopotential height was higher eastward and lower westward over the low latitudes in cold and wet years. By contrast, in cold and dry years, cold air invaded through the east path when coincidently negative anomaly of geopotential height occupied the low latitudes. In short, transport of water vapor was favored during cold and wet years while depressed during cold and dry years. Furthermore, the equatorial central and eastern Pacific was warmer (colder) earlier in the cold and wet (cold and dry) years, which resulted in larger (smaller) and stronger (weaker) subtropical high over the western Pacific and colder (warmer) western Pacific warm pool. Thus, obvious anti-cyclonic (cyclonic) circulation was stimulated over the Philippine Sea area, which promoted (depressed) the southwestward water vapor transport and generated more (less) precipitation in Guangdong. In warm and dry years, zonal circulation prevailed and the pattern with northward lower and southward higher geopotential height was found over the mid-high latitudes of East Asia. Moreover, both East Asian trough and Siberian high were weak, which were not favorable for the southward invasion of cold air. Guangdong was under the control of anticyclonic circulation, and thus divergence and sinking brought high temperature and less rainfall to Guangdong.
-
Key words:
- Guangdong /
- Spring Festival travel rush /
- concurrent variation /
- climatic characteristics /
- cold and wet /
- cold and dry /
- warm and dry
-
图 9 同图 8,但为冷干年合成分布
图 10 同图 8,但为暖干年合成分布
表 1 广东春运期间不同气温降水配置对应的海温和环流特征
类型 前期12月海温场 同期500 hPa高度场 同期海平面气压场 同期水汽输送场 冷湿 El Niño(3/4)
东印度洋海温偏暖(3/4)
西太平洋暖池海温偏冷(3/4)中高纬经向环流(4/4)
EU正位相(4/4)
东亚西部北高南低(3/4)
低纬度东高西低(2/4)
副高偏大偏强(3/4)西伯利亚高压偏强(4/4)
贝加尔湖至华南冷高压(2/4)
(中、西路冷空气)菲律宾反气旋(4/4)
广东位于辐合区偏南气流控制(3/4)
水汽充足冷干 La Niña(4/6)
东印度洋海温偏冷(4/6)
西太平洋暖池海温偏暖(3/6)
黑潮区海温偏低(4/6)中高纬经向环流(6/6)
“两脊一槽”(5/6)
东亚东部北高南低(5/6)
低纬度负异常(4/6)
副高偏小偏弱(5/6)西伯利亚高压偏强(4/6)
东北至华南冷高压(3/6)
(东路冷空气)菲律宾气旋(5/6)
广东位于辐散区偏北气流控制(4/6)
水汽条件差暖干 中性偏冷(8/11)
热带印度洋偶极子负位相(8/11)
鄂霍次克海海温偏冷(7/11)中高纬纬向环流(7/11)
东亚北低南高(8/11)
副高接近常年略偏强(7/ 11)
东亚大槽偏弱(8/11)西伯利亚高压偏弱(8/11)
广东负异常(8/11)广东上空反气旋
偏东气流辐散下沉(8/11)注:(a/b),其中a为海温和环流信号一致年数,b为不同异常类型总年数。 -
[1] 翟志宏, 王春林, 陈慧华, 等. 广东春运期间灾害性天气气候特征[J]. 热带气象学报, 2013, 29(2): 347-352. [2] 王华, 唐力生, 陈慧华, 等. 气候变化背景下广东冬种生产季气象灾害时空分布特征[J]. 热带气象学报, 2018, 35(4): 570-576. [3] 高安宁, 陈见, 李生艳, 等. 2008年华南西部罕见低温冷害天气成因分析[J]. 热带气象学报, 2009, 25(1): 110-116. [4] 吴俊杰, 袁卓建, 段炼, 等. 前秋雪盖和海温异常对2008年1月南方低温雨雪天气的影响[J]. 热带气象学报, 2014, 30(2): 345-352. [5] 张春艳, 张耀存. 2008年初持续性低温雨雪冰冻事件的东亚高空急流特征[J]. 热带气象学报, 2013, 29(2): 306-314. [6] 王晓芳, 程正泉, 姜丽萍. 2016年广东一次罕见寒潮雨雪冰冻天气过程分析[J]. 气象科技, 2019, 47(1): 106-115. [7] WEN M, YANG S, KUMAR A, et al. An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008[J]. Mon Wea Rev, 2009, 137(3): 1 111-1 131. [8] 李崇银, 顾薇. 2008年1月乌拉尔阻塞高压异常活动的分析研究[J]. 大气科学, 2010, 34(5): 865-874. [9] 马宁, 李跃凤, 琚建华. 2008年初中国南方低温雨雪冰冻天气的季节内振荡特征[J]. 高原气象, 2011, 30(2): 318-327. [10] 谭桂容, 陈海山, 孙照渤, 等. 2008年1月中国低温与北大西洋涛动和平流层异常活动的联系[J]. 大气科学, 2010, 34(1): 175-183. [11] 高辉, 陈丽娟, 贾小龙, 等. 2008年1月我国大范围低温雨雪冰冻灾害分析Ⅱ. 成因分析[J]. 气象, 2008, 34(4): 101-106. [12] 武炳义, 卞林根, 张人禾. 冬季北极涛动和北极海冰变化对东亚气候变化的影响[J]. 极地研究, 2004(3): 211-220. [13] BUEH C L. Large-Scale circulation features typical of wintertime extensive and persistent low temperature events in China[J]. Atmos Ocean Sci Lett, 2011, 4(4): 235-241. [14] BUEH C, SHI N, XIE Z. Large‐scale circulation anomalies associated with persistent low temperature over Southern China in January 2008[J]. Atmos Sci Lett, 2011, 12(3): 273-280. [15] 李刚, 马继望, 梁湘三. 2008年1月中国南方低温雨雪期间异常阻塞高压事件的多尺度动力过程分析[J]. 气象学报, 2020, 78(1): 18-32. [16] ZHOU W, CHAN J C L, CHEN W, et al. Synoptic-scale controls of persistent low temperature and icy weather over Southern China in January 2008[J]. Mon Wea Rev, 2009, 137(11): 3 978-3 991. [17] MIN W, SONG Y, KUMAR A, et al. An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008[J]. Mon Wea Rev, 2009, 137(3): 1 111-1 131. [18] 智协飞, 张玲, 潘嘉露. 我国南方冬季气候变暖前后极端降水事件分析[J]. 热带气象学报, 2011, 27(2): 166-172. [19] 王瑞丽, 肖子牛, 朱克云, 等. 太阳活动变化对东亚冬季气候的非对称影响及可能机制[J]. 大气科学, 2015, 39(4): 815-826. [20] 梁建茵, 吴尚森. 广东冬季气温变化的气候诊断分析[J]. 热带气象学报, 1999, 15(3): 30-38. [21] 胡蓓蓓, 胡娅敏. 广东2月"冷干"和"暖干"年代际特征对比及其与海温异常的联系[J]. 热带气象学报, 2021, 37(1): 61-72. [22] 黄嘉佑. 气象统计分析与预报方法(第四版)[M]. 北京: 气象出版社, 2016. [23] 王菡娟. 变暖还是变冷?中国工程院院士丁一汇解析全球变暖与极端天气气候事件之关系[N]. 人民政协报, 2021-01-14(6). [24] 伍红雨, 李春梅, 刘锦銮. 近52年广东冬季气温异常的气候特征及变化[J]. 热带地理, 2014, 34(1): 20-26. [25] 卢泽彬, 张宇, 徐建军, 等. 1960-2016年广东冬季降水变化特征及成因[J]. 广东海洋大学学报, 2021, 41(6): 53-63. [26] 简云韬, 简茂球, 杨崧. 前、后冬的东亚冬季风年际变异及其与东亚降水的关系[J]. 热带气象学报, 2017, 33(4): 519-529. [27] 何金海, 袁良, 祁莉. 冬季西太平洋暖池与华南降水关系的年代际变化[J]. 大气科学学报, 2015, 38(6): 721-730. [28] 彭京备. 东印度洋海温对中国南方冬季降水的影响[J]. 气候与环境研究, 2012, 17(3): 327-338. [29] WALLACE J M, GUTZLER D S. Teleconnections in the geopotential height field during the northern hemisphere winter[J]. Mon Wea Rev, 1981, 109(4): 784-812. [30] 刘毓赟, 陈文. 北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J]. 大气科学, 2012, 36(2): 423-432. [31] 姚慧茹, 李栋梁. 亚洲急流与冬季风的关系及其对中国气候的影响[J]. 气象学报, 2013, 71(3): 429-439. [32] 张春艳, 张耀存. 2008年初持续性低温雨雪冰冻事件的东亚高空急流特征[J]. 热带气象学报, 2013, 29(2): 306-314. [33] 田青, 温敏, 张人禾, 等. 中国南方冬季持续性温湿异常事件的分类和特征分析[J]. 气象学报, 2017, 75(5): 729-743. [34] 伍红雨, 潘蔚娟, 王婷. 华南冬季气温异常与ENSO的关系[J]. 气象, 2014, 40(10): 1 230-1 239. [35] 李忠贤, 陈建萍. 东亚冬季风与冬季黑潮海温异常的关系[J]. 江西气象科技, 2005(1): 10-14. [36] 王绍武, 闻新宇, 黄建斌. 东亚冬季风[J]. 气候变化研究进展, 2013, 9(2): 154-156. [37] 潘敖大, 李忠贤, 倪东鸿, 等. 欧洲冬季500 hPa环流异常及与中国气候异常的关系[J]. 气象科学, 2011, 31(2): 129-134. [38] 伍红雨, 杨崧. 华南冬季气温异常与大气环流和海温的关系[J]. 热带气象学报, 2014, 30(6): 1 061-1 068.