INTERDECADAL VARIATION OF THE WEST PACIFIC SUBTROPICAL HIGH AND ITS INFLUENCE ON THE VARIATION OF TYOHOONS IN RECENT 160 YEARS
-
摘要: 研究着眼于上百年尺度西太副高及台风活动变化特征,通过统计分析的方法对百年来台风活动特性及其与西太副高的相关性进行分析。结果表明:(1)近160 a副热带高压的范围增大、强度增强,在1980年前后,副高平均北界明显北抬,西脊点明显西伸,这种变化与经向环流(Hadley环流)和纬向环流(Walker环流)的变化相关,Hadley环流下沉支(wh)对西太副高关键区的副高强度(h)存在正影响,Walker环流上升支(ww)则存在负影响;(2)各区域1930年后台风影响时长和年频数均增加。而1975—2020年时段西北太平洋台风年平均影响时长与1930—1975年时段相比有所下降,但发生年频率无明显变化;华南地区的年影响时长与年频数没有明显变化,但我国华东沿海地区台风的年影响平均时长与年频数均显著增加。Hadley环流下沉支、Walker环流上升支、副高强度与西北太平洋台风活动范围向西向北伸展及各区域发生频率显著相关,具有一定的指示意义。Abstract: The study focuses on the change of typhoons on the scale of century, analyzes the influence of the West Pacific subtropical high on typhoon activity in recent 160 years, and analyzes the reasons for the change in typhoon activity characteristics in the past years by using statistical methods. The results show that: (1) The range and intensity of the subtropical high have increased in recent 160 years. After 1980, the average northern boundary of the subtropical high has obviously raised northward, and the western ridge point has obviously extended westward. This is related to the changes of the meridional and latitudinal circulation. The sinking part of Hadley circulation(wh) has a positive influence on the intensity(h) of the West Pacific subtropical high, but the raising part of Walker circulation(ww) has negative influence. (2) After 1930, the duration and annual frequency of typhoons' activities in the Northwest Pacific increased. Compared with 1930—1975, the annual average duration of typhoons' activities in the Northwest Pacific during 1975—2020 decreased, but the annual frequency did not change significantly. There is no obvious change in the annual impact duration and frequency in South China, while the average duration and frequency of typhoons' activities in East China increased significantly. The three factors wh, ww, and h are significantly related to the westward and northward extension of typhoons' activities in the Northwest Pacific and the frequency of each region.
-
Key words:
- typhoon /
- West Pacific Subtropical High /
- centennial scale /
- CMIP
-
表 1 假设均值相等的前提下台风发生年平均时长百年来变化情况
项目 区域 N1 N2 N3 Sig(N1, N2) Sig(N1, N3) Sig(N2, N3) 台风影响时长 西北太平洋 46 46 46 0.051 0.027 0.019 台风影响时长 华南地区 46 46 46 0.126 0.211 0.401 台风影响时长 华东地区 46 46 46 0.009 0.001 0.075 表 2 假设均值相等的前提下台风发生年频数百年来变化情况
项目 区域 N1 N2 N3 Sig(N1, N2) Sig(N1, N3) Sig(N2, N3) 台风影响频数 西北太平洋 46 46 46 0.001 0.001 0.146 台风影响频数 华南地区 46 46 46 0.001 0.005 0.148 台风影响频数 华东地区 46 46 46 0.001 0.001 0.062 表 3 wh、ww、h与华东、华南地区台风发生年频率的相关系数
地区 wh ww h 华东 -0.002 -0.015 0.267** 华南 -0.129* 0.111* 0.088 注:相关系数通过0.20显著性检验的用*标出, 通过0.05显著性检验的用**标出。 -
[1] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法(第四版)[M]. 北京: 气象出版社, 2007. [2] BERNSTEIN L, BOSCH P, CANZIANI O, et al. IPCC. Climate change 2007: Synthesis report[R]. Washington D. C. : U. S. Global Change Research Program, 2008. [3] 王雷, 周正强. 全球气候变暖对热带气旋(台风)及其灾害的影响[J]. 上海环境科学, 1990, 9(9): 24-28. [4] OOUCHI K, YOSHIMURA J, YOSHIMURA H, et al. Tropical cyclone climatology in a global warming climate as simulated in a 20kmmesh global atmospheric model: Frequency and wind intensity analyses[J]. J Meteor Soc Japan, 2006, 84(2): 259-276. [5] WU L G, WANG B, GENG S Q. Growing typhoon influence on east Asia[J]. Geophys Res Lett, 2005, 32(18): L18703. [6] 雷小途. 全球气候变化对台风影响的主要评估结论和问题[J]. 中国科学基金, 2011, 25(2): 85-89. [7] CHOUN Y, KIM M, KANG J, et al. Prediction of typhoon wind speeds under global warming conditions[C]// Proceedings of the KNS 2016 Spring Meeting. Jeju: Korea Nuclear Society, 2016. [8] 陈思奇, 徐峰, 李雅洁, 等. 近70a北太平洋夏季SST及其与西太副高变化特征的相关[J]. 热带气象学报, 2020, 36(6): 846-854. [9] 慕巧珍, 王绍武, 朱锦红, 等. 近百年夏季西太平洋副热带高压的变化[J]. 大气科学, 2001, 25(6): 787-797. [10] 龚道溢, 王绍武. 恢复近百年北半球500hPa高度场的试验[J]. 热带气象学报, 2000, 16(2): 148-154. [11] 吴国雄, 刘屹岷, 刘平, 等. 纬向平均副热带高压和Hadley环流下沉支的关系[J]. 气象学报, 2002, 60(5): 635-636. [12] JIANG W P, HUANG G, HUANG P, et al. Northwest pacific anticyclonic anomalies during post-El Niño summers determined by the pace of El Niño decay[J]. J Climate, 2019, 32(12): 3 487-3 503. [13] CHOI W, KIM K Y. Summertime variability of the Western North Pacific Subtropical High and its synoptic influences on the East Asian weather[J]. Sci Rep, 2019, 9(1): 7 865. [14] 龚道溢, 何学兆. 西太平洋副热带高压的年代际变化及其气候影响[J]. 地理学报, 2002(2): 185-193. [15] TU S F, XU F, XU J J. Regime shift in the destructiveness of tropical cyclones over the western North Pacific[J]. Environ Res Lett, 2018, 13(9): 094021. [16] 何立富, 陈双, 郭云谦. 台风利奇马(1909)极端强降雨观测特征及成因[J]. 应用气象学报, 2020, 31(5): 513-526. [17] 林春辉. 南海和西北太平洋台风异常路径频数及其与厄尼诺现象关系的分析[J]. 热带气象, 1988, 4(1): 46-52. [18] HO C, PARK C K, Yun J, et al. Asymmetric expansion of summer season on May and September in Korea[J]. Asia-Pacific J Atmos Sci, 2021, 57: 619-627. [19] 慕巧珍, 王绍武, 龚道溢. 近百年四季西太平洋副热带高压的变化[J]. 气象学报, 2002, 60(6): 668-679. [20] 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. [21] SONG Z Y, LIU H L, CHEN X R. Eastern equatorial Pacific SST seasonal cycle in global climate models: from CMIP5 to CMIP6[J]. Acta Oceano Sinica, 2020, 39: 50-60. [22] WANG C G, HU Y Y, WEN X Y, et al. Inter-model spread of the climatological annual mean Hadley circulation and its relationship with the double ITCZ bias in CMIP5[J]. Climate Dyn, 2020, 55: 2 823-2 834. [23] BROWN J N, LANGLAIS C, MAES C. Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5[J]. Clim Dyn, 2014, 42(11-12): 3 061-3 076. [24] GE Z A, CHEN L. Preliminary analysis of the zonal distribution of ENSO-related SSTA in three CMIP5 coupled models[J]. Atmos Oceanic Sci Lett, 2020, 13: 443-451. [25] 廖洞贤. 有关垂直速度计算的一些问题[J]. 广西气象, 1984(4): 1-5. [26] 潘威, 满志敏, 刘大伟, 等. 1644-1911年中国华东与华南沿海台风入境频率[J]. 地理研究, 2014, 33(11): 2 195-2 204. [27] 陆晓婕, 董昌明, 李刚. 1951-2015年进入东海的台风频数及登陆点的变化[J]. 大气科学学报, 2018, 41(4): 433-440. [28] 黄荣辉, 皇甫静亮, 刘永, 等. 西太平洋暖池对西北太平洋季风槽和台风活动影响过程及其机理的最近研究进展[J]. 大气科学, 2016, 40(5): 877-896.