COMPARATIVE ANALYSIS OF INITIAL CONDITION PERTURBATION SCHEMES FOR WARM-SECTOR RAINFALL OVER THE MIDDLE-LOWER REACHES OF THE YANGTZE RIVER CONSIDERING SCALE SENSITIVITY
-
摘要: 弱天气尺度强迫背景下的长江中下游暖区暴雨突发性强,高度非线性,难以准确预报,这时考虑不确定因素的集合预报成为重要选项,而对流尺度集合预报核心问题是积分一段时间后离散度偏低,会导致预报失败。比较包含不同尺度扰动信息的对流尺度集合预报方案间的差异性并据此优化初始扰动方案,针对2018年5月4—5日一次典型长江中下游暖区暴雨过程,分别采用动力降尺度(DOWN)、增长模繁殖法(BGM)、局地增长模繁殖法(LBGM)和混合扰动法(BLEND)等四种方法进行集合预报试验,以期探讨对离散度和预报效果的影响。结果表明,在模式积分0~6 h,具有中小尺度扰动信息的BGM和LBGM的离散度优于DOWN,其中LBGM相比于BGM具有一定程度上的改进,说明具有更准确中尺度特征的扰动能够在积分初始阶段获得有效增长,即考虑了中小尺度天气系统局地性的LBGM能弥补BGM的不足;但是,在模式积分12 h以后,具有更多大尺度特征扰动的DOWN优于区域模式中的增长模繁殖法BGM和LBGM,说明经过初始误差快速增长一段时间后,大尺度扰动开始起主要作用。而具有不同尺度扰动信息的BLEND方案则兼具LBGM和DOWN的优势,几乎在整个预报时段离散度较高且概率预报评分较好,体现出混合扰动的优越性。以上结果进一步说明,初始扰动的尺度特征在暖区暴雨的集合预报效果中具有关键性的作用,因而通过调整初始扰动的尺度信息来优化集合预报性能的混合扰动思想,在业务上具有一定的指导意义和推广价值。Abstract: Warm-sector rainfall event under the background of weak synoptic-scale forcing is difficult to predict accurately due to its abruptness and nonlinear, thus ensemble forecasts have become one of the crucial options considering uncertain factors. However, the core problem of convection-allowing ensemble forecast is that the spread is low after integration for a period, which will lead to prediction failure. Therefore, this paper compares the differences among the convection-allowing ensemble forecast schemes with different scale information for perturbations, and optimizes the initial perturbation scheme for the warm-sector rainstorm over the middle and lower reaches of the Yangtze River. Four convection-allowing ensemble forecast experiments with different initial perturbation schemes including dynamic downscaling (DOWN), breeding of the growing mode (BGM), Local BGM (LBGM), and BLEND, were carried out for a typical warm-sector rainfall on May 4—5, 2018. The aim is to explore the impact on spread and forecast. The results show that the ensemble forecast results of LBGM and BGM are better than that of DOWN in 0~6 h in the early stage of model integration, and LBGM has a certain degree of improvement compared with BGM, which indicates that accurate small and medium scale perturbations can obtain effective growth at this stage. After 12 hours of integration, the forecast effect of DOWN is better than that of BGM and LBGM instead, which indicates that after the initial error increases rapidly for a period, the large-scale perturbations begin to play a major role. However, BLEND possesses the advantages of both LBGM and DOWN, and has a good forecast effect in almost the whole forecast period, reflecting the superiority of multi-scale blend initial condition perturbations. Since the convection-allowing ensemble forecast for this type of events are sensitive to the scale characteristics of the initial condition perturbations, adjusting the scale of the initial condition perturbation has certain significance in operation for the development of highquality convection-allowing ensemble forecast system.
-
Key words:
- scale sensitivity /
- warm-sector rainstorm /
- initial condition perturbation /
- local BGM /
- blend
-
表 1 四种初始扰动方案
集合试验 成员数 初始扰动方案 DOWN 12 从TIGGE计划中ECMWF全球集合预报系统的分析扰动中,采用动力降尺度方法得到 BGM 12 采用区域版本的BGM方法,繁殖时间为3 d,周期为6 h LBGM 12 采用LBGM方法,繁殖参数同BGM,邻域半径取8 BLEND 12 将DOWN和LBGM的初始场混合得到,滤波时采用的过渡波段为256~512 km -
[1] LORENZ E N. The predictability of a flow which possesses many scales of motion[J]. Tellus, 1969, 21(3): 289-307. [2] 闵锦忠, 吴乃庚. 近二十年来暴雨和强对流可预报性研究进展[J]. 大气科学, 2020, 44(5): 1 039-1 056. [3] EPSTEIN E S. Stochastic dynamic prediction[J]. Tellus, 1969, 21(6): 739-759. [4] LEITH C E. Theoretical skill of Monte Carlo forecasts[J]. Mon Wea Rev, 1974, 102(6): 409-418. [5] 张涵斌, 智协飞, 陈静, 等. 区域集合预报扰动方法研究进展综述[J]. 大气科学学报, 2017, 40(2): 145-157. [6] HOFFMAN R N, KALNAY E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus, 1983, 35(2): 100-118. [7] HOUTEKAMER P L, DEROME J. Methods for ensemble prediction[J]. Mon Wea Rev, 1995, 123(7): 2 181-2 196. [8] 麻巨慧, 朱跃建, 王盘兴, 等. NCEP、ECMWF及CMC全球集合预报业务系统发展综述[J]. 大气科学学报, 2011, 34(3): 370-380. [9] SCHWARTZ C S, WONG M, ROMINE S, et al. Initial conditions for convection-allowing ensembles over the conterminous United States[J]. Mon Wea Rev, 2020, 148(7): 2 645-2 669. [10] ZHUANG X R, MIN J Z, ZHANG L, et al. Insights into convective-scale predictability in East China: Error growth dynamics and associated impact on precipitation of warm-season convective events[J]. Adv Atmos Sci, 2020, 37(8): 893-911. [11] ZHANG X B, WAN Q L, XUE J S, et al. The impact of different physical processes and their parameterizations on forecast of a heavy rainfall in South China in annually first raining season[J]. J Trop Meteor, 2015, 21(2): 194-210. [12] ZHANG X B. Impacts of different perturbation methods on multiscale interactions between multisource perturbations for convection-permitting ensemble forecasting during SCMREX[J]. Quart J Roy Meteor Soc, 2021, 147(741): 3 899-3 921. [13] VIE B, NUISSIER O, DUCROCQ V. Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions[J]. Mon Wea Rev, 2011, 139(2): 403-423. [14] PERALTA C, BOUALLEGUE Z B, THEIS S E. Accounting for initial condition uncertainties in COSMO-DE-EPS[J]. J Geophys Res, 2012, 177(D7): D07108. [15] ZHANG X B. Multiscale characteristics of different-source perturbations and their interactions for convection-permitting ensemble forecasting during SCMREX[J]. Mon Wea Rev, 2019, 147(1): 291-310. [16] PENA M, KALNAY E. Separating fast and slow modes in coupled chaotic systems[J]. Nonlinear Proc Geoph, 2004, 11(3): 319-327. [17] 肖玉华, 何光碧, 陈静, 等. 区域集合预报增长模繁殖扰动方法研究[J]. 高原气象, 2011, 30(1): 94-102. [18] CHEN C H, LI X, HE H R, et al. Algorithm based on local breeding of growing modes for convection-allowing ensemble forecasting [J]. Sci China Earth Sci, 2018, 61(4): 462-472. [19] LI K, CHEN C H, HE H R, et al. Application of Gaussian weight to improve perturbation features of convection-permitting ensemble forecast based on local breeding of growing modes[J]. J Meteorol Res, 2021, 35(3): 490-504. [20] 张涵斌, 李玉焕, 范水勇, 等. 基于动力降尺度的区域集合预报初值扰动构建方法研究[J]. 气象, 2017, 43(12): 1 461-1 472. [21] 李俊, 杜钧, 王明欢, 等. AREM模式两种初值扰动方案的集合降水预报试验及检验[J]. 热带气象学报, 2010, 26(6): 733-742. [22] SAITO K, HARA M, KUNⅡ M, et al. Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the Meteorological Research Institute for the WWRP Beijing 2008 Olympics Research and Development Project (B08RDP) [J]. Tellus A, 2011, 63(3): 445-467. [23] ZHANG H B, CHEN J, ZHI X F, et al. A comparison of ETKF and downscaling in a regional ensemble prediction system[J]. Atmosphere, 2015, 6(3): 341-360. [24] WANG Y, BELLUS M, GELEYN J F, et al. A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending[J]. Mon Wea Rev, 2014, 142(5): 2 043-2 059. [25] 庄潇然, 闵锦忠, 王世璋, 等. 风暴尺度集合预报中的混合初始扰动方法及其在北京2012年"7.21"暴雨预报中的应用[J]. 大气科学, 2017, 41(1): 30-42. [26] CARON J F. Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: A case study[J]. Mon Wea Rev, 2013, 141(1): 356-374. [27] ZHANG H B, CHEN J, ZHI X F. Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system[J]. Adv Atmos Sci, 2015, 32(8): 1 143-1 155. [28] GEBHARDT C, THEIS S E, PAULAT M, et al. Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries[J]. Atmos Res, 2011, 100(2-3): 168-177. [29] ZHANG X B. Application of a convection-permitting ensemble prediction system to quantitative precipitation forecasts over southern China: Preliminary results during SCMREX[J]. Quart J Roy Meteor Soc, 2018, 144(717): 2 842-2 862. [30] 张小玲, 陶诗言, 张顺利. 梅雨锋上的三类暴雨[J]. 大气科学, 2004, 28(2): 187-205. [31] LIU J Y, TAN Z M. Mesoscale predictability of mei-yu heavy rainfall[J]. Adv Atmos Sci, 2009, 26(3): 438-450. [32] 周静, 郑永骏, 苗春生, 等. 梅雨锋强降水与低空急流日变化的观测分析和数值模拟[J]. 热带气象学报, 2017, 33(5): 750-761. [33] 陈玥, 谌芸, 陈涛, 等. 长江中下游地区暖区暴雨特征分析[J]. 气象, 2016, 42(6): 724-731. [34] SUN J H, ZHANG Y C, LIU R X, et al. A review of research on warm-sector heavy rainfall in China[J]. Adv Atmos Sci, 2019, 36(2): 1 299-1 307. [35] WU N G, ZHUANG X R, MIN J Z, et al. Practical and intrinsic predictability of a warm-sector torrential rainfall event in the south China monsoon region[J]. J Geophys Res, 2020, 125(4): e2019JD031313. [36] BAO X H, LUO Y L, GAO X Y. The synoptic impacts on the convection initiation of a warm-sector heavy rainfall event over coastal South China prior to the monsoon onset: A numerical modeling study[J]. J Geophys Res, 2021, 126(14): e2020JD034335. [37] 徐渊, 闵锦忠, 庄潇然. 基于对流尺度集合模拟的长江中下游暖区对流过程的可预报性研究[J]. 高原气象, 2022, 41(3): 684-697. [38] 谌芸, 吕伟绮, 于超, 等. 北方一次暖区大暴雨降水预报失败案例剖析[J]. 气象, 2018, 44(1): 15-25. [39] PARK Y Y, BUIZZA R, LEUTBECHER M. TIGGE: Preliminary results on comparing and combining ensembles[J]. Quart J Roy Meteor Soc, 2008, 134(637): 2 029-2 050. [40] EHRENDORFER M. Predicting the uncertainty of numerical weather forecasts: A review[J]. Meteor Z, 1997, 6(4): 147-183. [41] MA S J, CHEN C H, HE H R, et al. An analysis on perturbation features of convection-allowing ensemble prediction based on the local breeding growth mode[J]. Wea Forecasting, 2019, 34(2): 289-304. [42] WANG Y, BELLUS M, WITTMANN C, et al. The central European limited-area ensemble forecasting system: ALADIN-LAEF[J]. Quart J Roy Meteor Soc, 2011, 137(655): 483-502. [43] 马旭林, 计燕霞, 周勃旸, 等. GRAPES区域集合预报尺度混合初始扰动构造的新方案[J]. 大气科学学报, 2018, 41(2): 248-257. [44] SURCEL M, ZAWADZKI I, YAU M K. A study on the scale dependence of the predictability of precipitation patterns[J]. J Atmos Sci, 2015, 72(1): 216-235. [45] 潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5): 755-766. [46] 刘雪晴, 陈静, 陈法敬, 等. 降水邻域集合概率方法尺度敏感性试验[J]. 大气科学, 2020, 44(2): 282-296. [47] ZACHAROV P, REZACOVA D. Using the fractions skill score to assess the relationship between an ensemble QPF spread and skill[J]. Atmos Res, 2009, 94(4): 684-693. [48] ATGER F. Estimation of the reliability of ensemble-based probabilistic forecasts[J]. Quart J Roy Meteor Soc, 2004, 130(597): 627-646. [49] HAMILL T M. Interpretation of rank histograms for verifying ensemble forecasts[J]. Mon Wea Rev, 2001, 129(3): 550-560. [50] SCHWARTZ C S, ROMINE G S, SMITH K R, et al. Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter[J]. Wea Forecasting, 2014, 29(6): 1 295-1 318. [51] 庄潇然, 闵锦忠, 武天杰, 等. 风暴尺度集合预报中不同初始扰动的多尺度发展特征研究[J]. 高原气象, 2017, 36(3): 811-825. [52] ZHANG F Q, BEI N F, ROTUNNO R, et al. Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics[J]. J Atmos Sci, 2007, 64(10): 3 579-3 594.