EVOLUTION CHARACTERISTICS OF WATER VAPOR IN ZHEJIANG DURING LANDFALL OF TYPHOON HAGUPIT (2020)
-
摘要: 在2020年8月3—5日台风“黑格比”登陆期间,浙江地区出现了强降水。利用中国自动站与CMORPH融合降水产品及ERA5再分析资料进行分析,表明浙江地区强降水分两个阶段。为探究两个阶段降水成因,采用扰动天气图方法、拉格朗日轨迹追踪模式HYSPLIT与FLEXPART(the Flexible Particle Model)重点分析浙江地区强降水期间水汽输送特征,结果表明伴随强盛西南夏季风环流的水汽通道起着重要作用。最后,利用中尺度模式WRF_ARW进行了水汽条件的敏感性试验,进一步验证了西南季风水汽输送的重要性。在台风登陆降水预报过程中,需要关注西南夏季风背景下不同水汽输送影响。Abstract: Based on ERA5 reanalysis data and CMORPH data, the evolution of water vapor in Zhejiang Province during the landfall of Typhoon (TY) Hagupit during August 3—5, 2020 is investigated by using the perturbation weather map method. It is found that there are two stages of strong precipitation during this event. The first stage can be ascribed to the main circulation of TY just during the landfall period. As it moved northward, the second stage is likely to be ascribed to the interaction between strong summer monsoon flow and the outer circulation of TY. The backward trajectory models (HYSPLIT and FLEXPART Model) show that the water vapor transport accompanied by the strong summer monsoon flow plays an important role. The importance of water vapor transport accompanied by the strong summer monsoon flow is further verified by using two sensitive experiments based on the WRF-ARW model. This study shows that it is necessary to pay more attention to the influence of different water vapor transport associated with summer monsoon flows.
-
Key words:
- typhoon /
- TC landfall precipitation /
- water vapor transport
-
表 1 WRF模式参数化方案设置
参数化过程 方案设置 微物理方案 Lin 长波辐射方案 RRTM 短波辐射方案 Dudhia 边界层方案 YSU 积云对流方案 Kain-Fritsch 表 2 WRF模式试验设置
试验名称 试验方法 试验目的 CTL 控制试验 对照试验 RH55 25 °N南侧的RH减少为原RH的55% 抑制西南季风水汽输送 noSMflx TC登陆后关闭模式d03域的地表潜热通量 关闭台风主体地表水汽反馈 -
[1] 陈联寿, 罗哲贤, 李英. 登陆热带气旋研究的进展[J]. 气象学报, 2004, 62(5): 541-549. [2] 陈联寿. 热带气旋研究和业务预报技术的发展[J]. 应用气象学报, 2006, 4(6): 672-681. [3] 叶成志, 李昀英. 热带气旋"碧利斯"与南海季风相互作用的强水汽特征数值研究[J]. 气象学报, 2011, 69(3): 496-507. [4] 陶诗言. 中国之暴雨[M]. 北京: 气象出版社, 1980. [5] 陈联寿, 孟智勇, 丛春华. 台风暴雨落区研究综述[J]. 海洋气象学报, 2017, 37(4): 1-7. [6] 李英, 陈联寿, 徐祥德. 水汽输送影响登陆热带气旋维持和降水的数值试验[J]. 大气科学, 2005, 29(1): 91-98. [7] LI Y, CHEN L S. Numerical study on impact of the boundary layer fluxes over wetland on sustention and rainfall of landfalling tropical cyclones[J]. Acta Meteor Sinic, 2007, 21(1): 34-46. [8] 潘婧茹, 张雪蓉, 马明明, 等. 2012年"海葵"台风影响江苏的两端大暴雨特征分析[J]. 气象科学, 2016, 36(1): 102-111. [9] 王烨豪. 登陆福建台风造成浙江强降水的分布特征和成因分析[J]. 浙江气象, 2021, 42(1): 25-30. [10] 胡潇杰, 俞宏耀, 於敏佳. 台风"黑格比"近海加强成因及对比分析[J]. 现代农业科技, 2021(9): 187-193. [11] 钱维宏. 天气尺度瞬变扰动的物理分解原理[J]. 地球物理学报, 2012, 55(5): 1 439-1 448. [12] 钱维宏, 陈绿文, 栗晗. 中期模式扰动量在广州-东莞极端暴雨中的解释应用[J]. 气象研究与应用, 2020, 41(2): 07-13. [13] 钱维宏, 艾阳, 陈笑晨. 辽宁开原龙卷强对流过程的扰动天气环境[J]. 地球物理学报, 2021, 64(5): 1 531-1 541. [14] 任宏利, 张培群, 李维京, 等. 西北区东部春季降水及其水汽输送的低频振荡特征[J]. 高原气象, 2006, 25(2): 285-292. [15] REN X J, YANG X Q, HU H B. Subseasonal variations of wintertime North Pacific evaporation, cold air surges, and water vapor transport [J]. J Climate, 2017, 30(23): 9 475-9 491. [16] 游振宇, 刘世淦, 王轩同, 等. ENSO对冬季北太平洋水汽输送及大气河的影响[J]. 气象科学, 2021, 41(1): 70-77. [17] 丁一汇, 胡国权. 1998年中国大洪水时期的水汽收支研究[J]. 气象学报, 2003, 61(2): 129-145. [18] 陈红专, 毛紫怡, 陈静静. 中国近30年有/无大气河伴随的登陆台风气候学特征对比分析[J]. 气象学报, 2020, 78(5): 745-760. [19] STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA's HYSPLIT atmospheric transport and dispersion modeling system[J]. Bull Amer Meteor Soc, 2015, 96(12): 2 059-2 077. [20] ROLPH G, STEIN A, STUNDER B. Real-time Environmental Applications and Display System: READY[J]. Environmental Modelling & Software, 2017, 95(1): 210-228. [21] STOHL A, HITTENBERGER M, WOTAWA G. Validation of the lagrangian particle dispersion model flexpart against large-scale tracer experiment data[J]. Atmos Environ, 1998, 32(24): 4 245-4 264. [22] STOHL A, JAMES P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part Ⅰ: Method description, validation, and demonstration for the August 2002 flooding in central Europe[J]. J Hydrometeorol, 2004, 5(4): 656-678. [23] STOHL A, JAMES P. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part Ⅱ: Moisture transports between earth' s basins and river catchments[J]. J Hydometeorol, 2005, 6(6): 961-984. [24] 徐洪雄, 徐祥德, 陈斌, 等. 双台风生消过程涡旋能量、水汽输送相互影响的三维物理图像[J]. 气象学报, 2013, 71(5): 825-838. [25] HUANG Y J, CUI X P. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method[J]. Atmos Sci Lett, 2015, 16(2): 177-183. [26] 薛一迪, 崔晓鹏. "威马逊"(1409)降水水汽来源和源区定量贡献分析[J]. 大气科学, 2020, 44(2): 341-355. [27] NUMAGUTI A. Origin and recycling processes of precipitating water over the Eurasian Continent: Experiments using an atmospheric general circulation model[J]. J Geophys Res, 1999, 104(D2): 1 957-1 972. [28] TRENBERTH K E. Atmospheric moisture recycling: Role of advection and local evaporation[J]. J Climate, 1999, 12(5): 1 368-1 381. [29] SUN B, WANG H J. Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART[J]. J Climate, 2014, 27(6): 2 457-2 474. [30] SUN B, WANG H J. Analysis of the major atmospheric moisture sources affecting three sub-regions of East China[J]. Int J Climatol, 2015, 35(9): 2 243-2 257.