ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卫星遥感的南海海-气CO2通量研究

蔡大鑫 刘少军 佟金鹤 赵婷

蔡大鑫, 刘少军, 佟金鹤, 赵婷. 基于卫星遥感的南海海-气CO2通量研究[J]. 热带气象学报, 2023, 39(4): 462-473. doi: 10.16032/j.issn.1004-4965.2023.042
引用本文: 蔡大鑫, 刘少军, 佟金鹤, 赵婷. 基于卫星遥感的南海海-气CO2通量研究[J]. 热带气象学报, 2023, 39(4): 462-473. doi: 10.16032/j.issn.1004-4965.2023.042
CAI Daxin, LIU Shaojun, TONG Jinhe, ZHAO Ting. STUDY ON AIR-SEA CO2 FLUX IN THE SOUTH CHINA SEA BASED ON SATELLITE REMOTE SENSING[J]. Journal of Tropical Meteorology, 2023, 39(4): 462-473. doi: 10.16032/j.issn.1004-4965.2023.042
Citation: CAI Daxin, LIU Shaojun, TONG Jinhe, ZHAO Ting. STUDY ON AIR-SEA CO2 FLUX IN THE SOUTH CHINA SEA BASED ON SATELLITE REMOTE SENSING[J]. Journal of Tropical Meteorology, 2023, 39(4): 462-473. doi: 10.16032/j.issn.1004-4965.2023.042

基于卫星遥感的南海海-气CO2通量研究

doi: 10.16032/j.issn.1004-4965.2023.042
基金项目: 

海南省重点研发计划项目 ZDYF2021SHFZ062

中国气象局创新发展专项 CXFZ2022P016

海南省气象局科研项目 HNQXJS 202214

详细信息
    通讯作者:

    蔡大鑫,黑龙江省人,高级工程师,主要从事生态遥感、应用气象研究。E-mail: cdxxhyn@126.com

  • 中图分类号: P407

STUDY ON AIR-SEA CO2 FLUX IN THE SOUTH CHINA SEA BASED ON SATELLITE REMOTE SENSING

  • 摘要: 海洋是地表环境中最重要的碳库,准确估算CO2在海洋与大气之间的交换对于进一步阐明其变化过程机理具有重要意义。利用南海2011—2020年的海温、风速、海平面气压等多种遥感反演数据,基于海-气分压差算法,构建了海-气CO2通量遥感估算模型,并分析其时空变化特征。结果表明:(1) 遥感估算模型在整个南海海域具有较好的通用性,对比实测区域数据,估算结果的平均绝对误差和均方根误差分别为1.04和1.37 mmol/(m2·d);对于源汇区的识别准确率达到90.63%。(2) 南海总体表现为弱碳源,CO2通量的季节变化呈现出夏秋季高、冬春季低的特征,夏季和冬季分别为全年最高和最低。空间分布特征为南北部差异大。碳汇高值区始终位于北部,且冬季为强碳汇,而碳源高值区夏季出现在中南半岛东南部,秋季则转移到南海东北部。(3) 南海三种典型区(北部陆架陆坡、中部海盆、南部陆坡)的CO2通量随时间推移均呈现降低的趋势,且北部下降速度最快。2011—2020年,南海年均向大气净释放碳1.51×107 t,但其碳释放量呈降低趋势,降低速度为2.03×106 t/a,南海总体的“碳源”强度有所减弱。研究结果可为制定碳排放及碳交易政策提供科学参考。

     

  • 图  1  研究区位置

    图  2  南海SST与pCO2对数的线性拟合

    图  3  pCO2观测值与模拟值的线性拟合

    图  4  南海海-气CO2通量验证

    图  5  2011—2020年南海各季海-气CO2通量

    图  6  南海2011—2020年平均海-气CO2通量

    图  7  南海典型区2011—2020年海-气CO2通量变化趋势

  • [1] IPCC. Climate Change 2021: the Physical Science basis[M]. Cambridge: Cambridge University Press, 2021.
    [2] 焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学, 2018, 48(11): 1393-1421.
    [3] WANNINKHOF R, PARK G H, TAKAHASHI T, et al. Global ocean carbon uptake: Magnitude, variability and trends[J]. Biogeosciences, 2013, 10: 1983-2000.
    [4] BAKKER D C E, PFEIL B, LANDA C S, et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)[J]. Earth Syst Sci Data, 2016, 8(2): 383-413.
    [5] LANDSCHÜTZER P, GRUBER N, BAKKER D C E, et al. Recent variability of the global ocean carbon sink[J]. Global Biogeochem. Cycles, 2014, 30: 927-949.
    [6] JIN C X, ZHOU T J, CHEN X L, et al. Seasonally evolving dominant interannual variability mode of air-sea CO2 flux over the western North Pacific simulated by CESM1-BGC[J]. Science China Earth Sciences, 2017. 60: 1854-1865.
    [7] JIANG L Q, CAI W J, WANNINKHOF R, et al. Air-sea CO2 fluxes on the U.S. South Atlantic Bight: Spatial and seasonal variability[J]. J Geophy Res Atmos, 2008, 113(C7): 63-72.
    [8] POLUKHIN A A, FLINT M V, BELIKOV I B, et al. Carbon dioxide flux at the water-air boundary at the continental slope in the Kara Sea [J]. Oceanology, 2021, 61: 625-631.
    [9] ORR J, FABRY V, AUMONT O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms [J]. Nature, 2005, 437: 681-686.
    [10] SUTTON A J, WANNINKHOF R, SABINE C L, et al. Variability and trends in surface pCO2 and CO2 flux in the Pacific Ocean[J]. Geophys Res Lett, 2017, 44 (11) : 5627-5636.
    [11] JACOBSON A R, MIKALOFF F S E, GRUBER N, et al. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide. 2. Regional results[J]. Global Biogeochem. Cycles, 2007, 21(1): GB1020.
    [12] WOOLF D K, SHUTLER J D, GOODJIN-MURFHY L, et al. Key uncertainties in the recent air-sea flux of CO2[J]. Glob Biogeochem Cycl, 2019, 33: 1548-1563.
    [13] 蒋锦刚, 周斌, 马国春, 等. 海-气CO2通量实测数据通量计算中误差传递模拟与敏感性分析[J]. 海洋学报, 2013, 35(4): 64-71.
    [14] STEPHENS M P, SAMUELS G, OLSON D B, et al. Sea-air flux of CO2 in the North Pacific using shipboard and satellite data[J]. J Geophys Res Oceans, 1995, 100 (C7) : 13571-13583.
    [15] OLSEN A, TRIÑANES J, WANNINKHOF R. Sea-air flux of CO2 in the Caribbean Sea estimated using in situ and remote sensing data[J]. Remote Sens Environ, 2004, 89: 309-325.
    [16] ONO T, SAINO T, KURITA N, et al. Basin-scale extrapolation of shipboard pCO2 data by using satellite SST and Chla[J]. Int J Remote Sens, 2004, 25: 3803-3815.
    [17] 朱钰, 商少凌, 翟惟东, 等. 南海北部夏季海表二氧化碳分压及其海气通量的遥感算法初探[J]. 自然科学进展, 2008, 18(8): 951-955.
    [18] SARMA V V S S, SAINO T, SASAOKA K, et al. Basin-scale pCO2 distribution using satellite sea surface temperature, Chl 2 and climatological salinity in the North Pacific in spring and summer[J]. Global Biogeochem. Cycles, 2006, 20(3) : GB3005.
    [19] 吕航宇, 白雁, 李骞, 等. 夏季珠江口海域海水CO2分压的卫星遥感反演[J]. 海洋学研究, 2018, 36(2): 1-11.
    [20] JO Y H, DAI M, ZHAI W, et al. On the variations of sea surface pCO2 in the northern South China Sea: A remote sensing based neural network approach[J]. J Geophys. Res Space Phys, 2012, 117: 1-13.
    [21] 戴民汉, 孟菲菲. 南海碳循环: 通量、调控机理及其全球意义[J]. 科技导报, 2020, 38(18): 30-34.
    [22] ZHAI W, DAI M, CAI W J, et al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn[J]. Mar Chem, 2005, 96: 87-97.
    [23] 翟惟东. 南海北部春季非水华期的CO2分压及其调控[J]. 海洋学报, 2015, 37(6): 31-40.
    [24] 姜亦飞, 王辉, 乔然, 等. 南海东北部春季海表pCO2分布及海-气CO2通量[J]. 海洋学报, 2014, 36(6): 18-24.
    [25] DU C, GAN J, HUI C R, et al. Dynamics of dissolved inorganic carbon in the South China Sea: A modeling study[J]. Prog. Oceanogr, 2020, 186, 102367.
    [26] WU K, DAI M H, CHEN J H, et al. Dissolved organic carbon in the South China Sea and its exchange with the Western Pacific Ocean[J]. Deep-Sea Res. Ⅱ, 2015.
    [27] HUNG J J, WANG Y J, TSENG C M, et al. Controlling mechanisms and cross linkages of ecosystem metabolism and atmospheric CO2 flux in the northern South China Sea[J]. Deep-Sea Res. Pt. I, 2020, 157: 103205.
    [28] MORALES-WILLIAMS A M, WANAMAKER A D, WILLIAMS C J, et al. Eutrophication drives extreme seasonal CO2 flux in lake ecosystems[J]. Ecosystems, 2021, 24: 434-450.
    [29] 许欣, 于培松, 蔡小霞, 等. 南海西部秋季海表pCO2分布与海-气CO2通量[J]. 热带海洋学报, 2016, 35(3): 55-64.
    [30] YAN H Q, YU K F, SHI Q, et al. Air-sea CO2 fluxes and spatial distribution of seawater pCO2 in Yongle Atoll, northern-central South China Sea[J]. Continental Shelf Research, 2018, 165: 71-77.
    [31] GE R, CHEN H, ZHUANG Y, et al. Active Carbon Flux of Mesozooplankton in South China Sea and Western Philippine Sea[J]. Front Mar Sci, 2021, 8: 697743.
    [32] YU P, WANG Z A, CHURCHILL J, et al. Effects of typhoons on surface seawater pCO2 and air-sea CO2 fluxes in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2020, 125(8) : e2020JC016258.
    [33] LI D, NI X, WANG K, et al. Biological CO2 Uptake and Upwelling Regulate the Air-Sea CO2 Flux in the Changjiang Plume Under South Winds in Summer[J]. Front Mar Sci, 2021, 8: 709783.
    [34] JI X, LIU G, GAO S, et al. Comparison of air-sea CO2 flux and biological productivity in the South China Sea, East China Sea, and Yellow Sea: a three-dimensional physical-biogeochemical modeling study[J]. Acta Oceanol. Sin. 2017, 36: 1-10.
    [35] LI Q, GUO X H, ZHAI W D, et al. Partial pressure of CO2 and air-sea CO2 fluxes in the South China Sea: Synthesis of an 18-year dataset [J]. Progress in Oceanography, 2020, 182: 1-20.
    [36] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean[J]. J Geophys Res, 1992, 97(C5) : 7373-7382.
    [37] WEISS R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas[J]. Mar Chem, 1974, 2: 203-215.
    [38] WEISS R F, PRICE B A. Nitrous oxide solubility in water and seawater[J]. Marine Chemistry, 1980, 8(4): 347-359.
    [39] ZHAI W D, DAI M H, CHEN B S, et al. Seasonal variations of sea-air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements[J]. Biogeosciences, 2013, 10: 7775-7791.
    [40] YIN S, WANG X F, TANI H, et al. Analyzing temporo-spatial changes and the distribution of the CO2 concentration in Australia from 2009 to 2016 by greenhouse gas monitoring satellites[J]. Atmos Environ, 2018, 192: 1-12.
    [41] 吴长江, 雷莉萍, 曾招城. 不同卫星反演的大气CO2浓度差异时空特征分析[J]. 中国科学院大学学报, 2019, 36(3): 331-337.
    [42] 费龙, 邓国荣, 张洪岩, 等. 基于降水Z指数的朝鲜降水及旱涝时空特征[J]. 自然资源学报, 2020, 35(12): 3051-3063.
    [43] TAKAHASHI T, OLAFSSON J, GODDARD J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Glob[J]. Biogeochem. Cycle, 1993, 7: 843-878.
    [44] 李阳春, 徐永福. 太平洋海气CO2通量对气候事件的响应[J]. 气候与环境研究, 2013, 18(5): 571-582.
    [45] 张雷, 任国玉, 宝乐尔其木格, 等. 基于卫星观测的南海表层温度气候学特征及长期变化[J]. 气候变化研究进展, 2017, 13(3): 189-197.
    [46] 黄卓, 徐海明, 杜岩, 等. 厄尔尼诺期间和后期南海海面温度的两次显著增暖过程[J]. 热带海洋学报, 2009, 28 (5): 49-55.
    [47] JIN C X, ZHOU T, CHEN X L. Can CMIP5 earth system models reproduce the interannual variability of air-sea CO2 fluxes over the tropical Pacific Ocean?[J]. J Climate, 2019, 15: 2261-2275.
    [48] DAI M H, SU J Z, ZHAO Y Y, et al. Carbon fluxes in the coastal ocean: Synthesis, boundary processes and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 593-626.
    [49] 邱爽, 叶海军, 张玉红, 等. 基于航次观测和再分析资料的南海海表二氧化碳分压反演及变化机制分析[J]. 热带海洋学报, 2022, 41(1): 106-116.
    [50] COOPER D J, WATSON A J, LING R D. Variation of PCO2 along a North Atlantic shipping route (U. K. to the Caribbean): A year of automated observations[J]. Marine Chemistry, 1998, 60(1-2): 147-164.
    [51] MU L, STAMMERJOHN S E, LOWRY K E, et al. Spatial variability of surface pCO2 and air-sea CO2 flux in the Amundsen Sea Polynya, Antarctica[J]. Elementa Sci Anthropocene, 2014, 2: 000036.
    [52] 王继纲, 蒋荣根, 陈文锋. 春、秋季台湾海峡海-气CO2通量及其影响因素[J]. 应用海洋学学报, 2018, 37(3): 313-320.
    [53] AKHTAR S, EQUEENUDDIN S M, BASTIA F. Distribution of pCO2 and air-sea CO2 flux in Devi estuary, eastern India[J]. Applied Geochemistry, 2021, 131: 1-11.
    [54] HE Q, ZHAN H, CAI S, et al. Eddy-Induced Near-Surface Chlorophyll Anomalies in the Subtropical Gyres: Biomass or Physiology?[J]. Geophysical Research Letters, 2021, 48(7) : e2020GL091975.
    [55] LAND P E, SHUTLER J D, COWLING R D, et al. Climate change impacts on sea-air fluxes of CO2 in three Arctic seas: A sensitivity study using Earth observation[J]. Biogeosciences, 2013, 10: 8109-8128.
    [56] 陈立奇, 高众勇, 詹力扬, 等. 极区海洋对全球气候变化的快速响应和反馈作用[J]. 应用海洋学学报, 2013, 32(1): 138-144.
    [57] 盂晓阳, 张兴赢, 周敏强, 等. GOSAT卫星二氧化碳遥感产品的验证与分析[J]. 气象, 2018, 44(10): 1306-1317.
  • 加载中
图(7)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  24
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2023-06-28
  • 网络出版日期:  2023-10-24
  • 刊出日期:  2023-08-20

目录

    /

    返回文章
    返回